Author:
Song Han-Bing,Lang Peng,Ji Bo-Yu,Xu Yang,Song Xiao-Wei,Lin Jing-Quan, , ,
Abstract
Understanding the propagation characteristics of surface plasmon polaritons (SPPs) is of great significance in designing and constructing on-chip integrated systems utilizing plasmonic effect. Accurately characterizing and flexibly controlling SPP on thin metal film are indispensable. Here, we theoretically derive the group velocity dispersion of SPP propagation on the surface of Au films with various thicknesses. The results obtained in this work indicate that when the thickness of the Au film is less than 40 nm, group velocity dispersion of SPP decreases significantly as the film thickness increases. The decrease of group velocity dispersion becomes mild with the thickness increasing from 40 nm to 60 nm, then the dispersion keeps a very low constant value for the film thicker than 60 nm. Using the finite-difference time-domain method, temporal evolution of localized electric field of SPP is numerically simulated for various propagation distances. By comparing the field amplitudes and the dispersions of SPP which are excited by incident light pulses with different dispersions, group velocity dispersions of SPP on the Au films are obtained, showing a good consistence with the theoretical results. Moreover, we demonstrate that by utilizing the tailored SPP to excite metal nanoantenna, selective excitations at different frequencies on a femtosecond temporal scale can be achieved through localized surface plasmonic resonant effect. Manipulating the sign and amount of the dispersion from the incident pulse, the active control of the switching sequence and switching time of electric field between the Au cylinders can be achieved. Manipulating the propagation distance of SPP, the active control of the switching time of electric field between the Au cylinders can be achieved. Therefore, those results provide a promising avenue for realizing functions such as signal propagation, reception, adjustment, and encoding in on-chip interconnect circuit systems based on SPP. This work shows that the dispersion can be used as degree of freedom for controlling the amplitude, phase and pulse width of SPP propagating on thin film, and it is of great importance in designing and controlling on-chip integrated systems through utilizing plasmonic effect, such as ultrafast frequency demodulators and nanoantennas in on-chip interconnect optical circuits.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences