Measurement method of metal surface absorptivity based on physics-informed neural network

Author:

Fang Bo-Lang,Wu Jun-Jie,Wang Sheng,Wu Zhen-Jie,Li Tian-Zhi,Zhang Yang,Yang Peng-Ling,Wang Jian-Guo,

Abstract

Characterizing the absorptivity of a rough metal surface is a difficult but important task. The uncertainty will be enlarged by using the indirect method, i.e. 1 – reflectance measurement. In contrast, the calorimetric method is of high fidelity. However, it is difficult to extract the absorptivity. The variation of temperature follows the heat conduction equation which is a differential equation. Therefore, a method based on physics-informed neural networks (PINNs) is proposed. In this method, the temperature rising curve is fitted to the differential equation by the neural network. The differential equation is incorporated into the network through the loss function. When the training is done, the absorptivity can be extracted. For demonstration, the numerical test and experimental test are performed. A set of temperature profiles with different absorptivity values is generated numerically. Then the absorptivity is extracted by PINN. The numerical results show that this method is able to determine the absorptivity and possesses the advantages of strong anti-interference capability and high accuracy. The maximum absolute error is 0.00092 in the range of 0.05 to 0.2. In the experiment, sand-blasted gold coated aluminum plates are used as the test objects, and they are heated by a continuous wave infrared laser. The temperature is measured by a K thermocouple. Then the absorptivity values of different samples are determined by the PINN, ranging from 2% to 10% because of the differences in roughness and electroplating process. The measurement repeatability is < 1%. The proposed method is very promising to become a powerful tool for measuring the absorptivity of rough metal surface.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3