Effect of Ti<sup>4+</sup> doping on magnetism and magnetodielectric properties of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>
-
Published:2024
Issue:17
Volume:73
Page:177501
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Wang Ming-Hao,Gong Gao-Shang,Zhang Hui-Jun,He Shi-Yue,Liu Ruo-Shui,Wang Li-Chen,Yang Shu-Xian, , , ,
Abstract
As a quasi-one-dimensional spin frustrated material, Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> has a series of interesting physical properties such as low-temperature spin freezing and multiple magnetized steps due to its unique structure. The magnetic properties of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> mainly come from Co ions, and the doping of different elements at the Co site has a great effect on the magnetic structure of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>. At present, the magnetic research of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> and its related compounds mainly focuses on exploring the influence of other elements replacing Co sites. For example, non-magnetic Sc<sup>3+</sup> can dilute the intrachain ferromagnetic exchange, while the doping of magnetic ions Mn<sup>4+</sup>, Fe<sup>3+</sup> or Cr<sup>3+</sup> can inhibit the intrachain ferromagnetic interaction and enhance the antiferromagnetic interchain interaction. Doping Ti<sup>4+</sup> ions, which are high-valence non-magnetic ions, not only dilutes the magnetic interaction of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>, but also changes the valence state of cobalt ions. i.e. it can convert part of Co<sup>3+</sup> ions into Co<sup>2+</sup> ions. Therefore, comparing with other doped ions, their introduction may have a more significant effect on the magnetoelectric properties of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>. In this study, a series of Ca<sub>3</sub>Co<sub>2–<i>x</i></sub>Ti<sub><i>x</i></sub>O<sub>6</sub> (<i>x</i> = 0, 0.02, 0.04, 0.06) polycrystalline samples is prepared by sol-gel method. Their magnetic, dielectric and magnetodielectric properties are measured. The XRD patterns show that a small number of Ti<sup>4+</sup> ions do not change the crystal structure of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>. Due to the destruction of the long-range ferromagnetic correlation of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> by non-magnetic Ti<sup>4+</sup> ions, the ferromagnetic interaction is inhibited to some extent. Because Ti<sup>4+</sup> ions are non-magnetic ions, they cannot form antiferromagnetic coupling with Co ions, resulting in the decrease of the Curie-Weiss temperature(<i>θ</i>). The positive <i>θ</i> value and exchange constant still indicate that the ferromagnetic interaction is dominant in Ti<sup>4+</sup> doped Ca<sub>3</sub>Co<sub>2–<i>x</i></sub>Ti<sub><i>x</i></sub>O<sub>6</sub> (<i>x</i> = 0, 0.02, 0.04, 0.06) samples. The substitution of non-magnetic ions Ti<sup>4+</sup> for Co<sup>3+</sup> ions also makes the effective magnetic moment of Ca<sub>3</sub>Co<sub>2–<i>x</i></sub>Ti<sub><i>x</i></sub>O<sub>6</sub> (<i>x</i> = 0, 0.02, 0.04, 0.06) monotonically decrease from <i>μ</i><sub>eff</sub> = 5.42<i>μ</i><sub>B</sub> for <i>x</i> = 0 to <i>μ</i><sub>eff</sub> = 5.18<i>μ</i><sub>B</sub> for <i>x</i> = 0.06. Accompanying the introduction of Ti<sup>4+</sup> ions, the spin frustration of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> is released partly, thus gradually fading the magnetization steps of Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub>. As the Ca<sub>3</sub>Co<sub>2</sub>O<sub>6</sub> is a typical magnetodielectric material, the released spin frustration in Ti<sup>4+</sup> doped samples and the variation of the subtle magnetic structure exert a large influence on the magnetodielectric coupling effect of Ca<sub>3</sub>Co<sub>2–<i>x</i></sub>Ti<sub><i>x</i></sub>O<sub>6</sub> (<i>x</i> = 0, 0.02, 0.04, 0.06) compounds.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Reference29 articles.
1. Gong G S, Guo J J, Ma Y M, Zhang YP, Wang YQ, Su Y L 2019 J. Magn. Magn. Mater. 482 323 2. Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2010 J. Low. Temp. Phys. 159 76 3. Gong G S, Wang M H, Li Z, Duan Y R, Zuo Y Y, Zhou J, Wang Y Q, Su Y L 2024 J. Magn. Magn. Mater. 590 171653 4. Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, Tian Z M 2021 Phys. Rev. Mater. 5 034405 5. Zhou J, Gong G S, Duan Y R, Wang L C, Zuo Y Y, Wang Y Q, Su Y L 2023 J. Solid State Chem. 323 124021
|
|