Effect of three-dimensional traveling wave magnetic field on plasma sheath density

Author:

Xu Zi-Yuan,Zhou Hui,Liu Guang-Han,Gao Zhong-Liang,Ding Li,Lei Fan, ,

Abstract

When the vehicle travels at a hypersonic speed or during re-entry, the surface is covered by a plasma sheath. Plasma sheath can impede electromagnetic wave propagation, causing vehicle radio signals to be attenuated or even interrupted, which is communication blackout. The traveling magnetic field is a kind of magnetic field that can mitigate the communication blackout by adjusting the density of the plasma sheath. In this work, a three-dimensional traveling magnetic field generation model and a three-dimensional plasma density distribution model are established for the problem that the one-dimensional traveling magnetic field cannot accurately describe the plasma density distribution in space. The mechanism of the interaction between the traveling magnetic field and the plasma is investigated to obtain the plasma density distribution in space. The results show that applying a traveling magnetic field can generate a density reduction region of 50<inline-formula><tex-math id="M2">\begin{document}$\times$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20240877_M2.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20240877_M2.png"/></alternatives></inline-formula>100 mm at the rear of the vehicle, resulting in a maximum decrease of 71% in plasma density in the region and providing continuous communication time. Meanwhile, the effects of initial density, collision frequency, traveling velocity and current magnitude on the plasma density distribution are investigated. The results show that with the increase of the initial density, the ability to regulate the plasma density is improved. However, due to the large density base, the adjusted plasma density is still higher than the plasma density of the low-density case. The increase of the collision frequency can significantly reduce the regulation effect. Increasing the traveling velocity and current can enhance the density-adjusting effect. However, further increasing the traveling velocity to above 800 m/s does not yield a more significant adjustment effect. Based on the data from the RAM-C flight test, the proposed model is used to study the effects of current magnitude and traveling velocity on the electromagnetic wave attenuation during aircraft reentry. The mitigation effect of the traveling magnetic field on electromagnetic wave attenuation is also compared with the effect of applying a static magnetic field. The results show that the applied traveling magnetic field can reduce the electromagnetic wave attenuation of the vehicle to below 30 dB in the X-band at an altitude of 30.48km, as well as in the L-, S-, C- and X-bands at other altitudes. The comparison between traveling magnetic field and static magnetic field demonstrates that the traveling magnetic field significantly outperforms the static magnetic field in mitigating electromagnetic wave attenuation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3