Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process

Author:

Liu Yan-Xin,Wang Zhi-Hui,Guan Shi-Jun,Wang Qin-Xia,Zhang Peng-Fei,Li Gang,Zhang Tian-Cai, ,

Abstract

Λ-enhanced gray molasses cooling (Λ-GMC) technique has been widely used in experiments to prepare cold atomic samples below the sub-Doppler temperature limit. To meet the experimental requirements of cavity quantum electrodynamics systems, we design and construct a wide-range, fast-tuning laser system by integrating tapered amplifiers, fiber phase modulators, etalon, injection locking amplification techniques etc. This laser system achieves a maximum tuning range of 600 MHz and a frequency tuning speed of 5 ns. Based on this laser system, loading atom in a crossed dipole trap assisted by cesium D2 line Λ-GMC cooling in the center of the optical microcavity is studied, and various factors affecting the atom loading are mainly as follows: laser duration <inline-formula><tex-math id="M4">\begin{document}$\tau $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M4.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M4.png"/></alternatives></inline-formula>, three-dimensional magnetic field <inline-formula><tex-math id="M5">\begin{document}$ \left( {{B_x}, {B_y}, {B_z}} \right) $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M5.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M5.png"/></alternatives></inline-formula>, single-photon detuning <inline-formula><tex-math id="M6">\begin{document}$\varDelta $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M6.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M6.png"/></alternatives></inline-formula>, two-photon detuning <inline-formula><tex-math id="M7">\begin{document}$\delta $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M7.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M7.png"/></alternatives></inline-formula>, ratio of cooling beam power to repumping beam power <inline-formula><tex-math id="M8">\begin{document}${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M8.png"/></alternatives></inline-formula>, and cooling beam power <inline-formula><tex-math id="M9">\begin{document}${I_{{\text{cooling}}}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M9.png"/></alternatives></inline-formula>. The optimal parameters in this system are follows: <inline-formula><tex-math id="M10">\begin{document}$ \tau = 7{\text{ ms}},\; \delta = 0.2{\text{ MHz}},\; \varDelta = 5\varGamma, \;{I_{{\text{cool}}}}/{I_{{\text{rep}}}} = 3, {\text{ and }} {I_{{\text{cool}}}} = 1.2{I_{{\text{sat}}}}. $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M10.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M10.png"/></alternatives></inline-formula> Comparing with traditional PGC-assisted loading, the number of atoms is increased about 4 times, and the atomic temperature decreases from <inline-formula><tex-math id="M11">\begin{document}$ 25{\text{ μK}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M11.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M11.png"/></alternatives></inline-formula> to <inline-formula><tex-math id="M12">\begin{document}$ 8{\text{ μK}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M12.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="11-20240182_M12.png"/></alternatives></inline-formula>. This experiment provides important insights for preparing ultracold atomic samples and capturing single atom arrays.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3