Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology

Author:

Zhao Han-Yu,Cao Shi-Ying,Dai Shao-Yang,Yang Tao,Zuo Ya-Ni,Hu Ming-Lie, , ,

Abstract

The iodine frequency stabilized 532 nm Nd:YAG laser plays an important role in realizing the reproduction unit of length “meter (m)”, absolute gravity measurement, gravitational waves detection, precision spectroscopy, distance metrology, etc. Absolute frequency measurement and calibration of the laser are of great significance for evaluating the performance of laser. The previous method of extending the erbium-doped fiber optical frequency comb (Er-FOFC) to the wavelength of 532 nm was to first amplify the seed light, then realize frequency-doubled with a periodic polarization lithium niobate crystal, and finally couple it into a photonic crystal fiber to expand the spectrum to the 532 nm band. With such a technique, the a signal-to-noise ratio (SNR) of the beat signal between the iodine-stabilized 532 nm Nd:YAG laser and the Er-FOFC was approximately 30 dB. Moreover, the SNR of the beat signal was unstable, resulting in the errors in frequency measurement with a counter. This is not conducive to the long-term frequency measurement of the iodine-stabilized 532 nm Nd:YAG laser. Therefore, a method that can obtain both high SNR and long-term stable beat signals is required. In this paper, an Er-FOFC is developed. The spectral enhancement of its broadening at 1 μm is carried out, and then expanded to the wavelength at 532 nm by using a frequency-doubling crystal. The output power of the Er-FOFC is 20 mW, which is first amplified to 370 mW by an Er-fiber amplifier and then compressed to a pulse width of 45.7 fs. Subsequently, the spectrum is extended to cover the wavelength at 1 μm with a highly nonlinear fiber, resulting in an output power of 180 mW. The broadened spectrum at 1 μm is amplified to 601 mW by a Yb-fiber amplifier, and the compressed power increases to 420 mW. Using an MgO:PPLN crystal, the compressed laser is frequency-doubled to produce a 532 nm laser output with 155 mW power and a doubling efficiency of 36%. Utilizing this system, the absolute frequency measurements are conducted on the fundamental frequency light at 1064 nm and the doubled frequency light at 532 nm from the iodine-stabilized 532 nm Nd:YAG laser, yielding a beat signal with an SNR of greater than 40 dB. This SNR represents a 13 dB improvement compared with the result obtained when an amplified seed light is frequency-doubled by using PPLN and then coupled into a PCF for direct spectral broadening to cover the 532 nm band. Over several days of continuous monitoring, there is no observed risk of SNR degradation. Moreover, subsequent frequency measurements are carried out continuously for over several hours, with the results maintaining consistency with recommended values.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3