Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices

Author:

Liu Hui,Lu Zhan-Peng,Xu Zhi-Hao, ,

Abstract

<sec>In this work, we investigate the influence of quasi-periodic modulation on the localization properties of one-dimensional non-Hermitian cross-stitch lattices with flat bands. The crystalline Hamiltonian for this non-Hermitian cross-stitch lattice is given by: </sec><sec><inline-formula><tex-math id="M232">\begin{document}$\hat{H}=\displaystyle\sum\limits_{n}\left[t(a_n^{\dagger} b_n + b_n^{\dagger}a_n ) + J{\mathrm{e}}^{h}\left(a_n^{\dagger}b_{n + 1} + a_n^{\dagger} a_{n + 1} + Ab_n^{\dagger}a_{n + 1} + Ab_n^{\dagger}b_{n + 1}\right) + J{\mathrm{e}}^{ - h} \left(Aa_{n + 1}^{\dagger}b_n + a_{n + 1}^{\dagger}a_n + b_{n + 1}^{\dagger}a_n + Ab_{n + 1}^{\dagger}b_n\right)\right] $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M232.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M232.png"/></alternatives></inline-formula>with <inline-formula><tex-math id="M216">\begin{document}$A =\pm 1$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M216.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M216.png"/></alternatives></inline-formula>. When <i>A</i> = 1, the clean lattice supports two bands with dispersion relations <inline-formula><tex-math id="M217">\begin{document}$E_0=- t, $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M217.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M217.png"/></alternatives></inline-formula><inline-formula><tex-math id="M217-1">\begin{document}$ E_1=4\cos (k - {\mathrm{i}}h) + t$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M217-1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M217-1.png"/></alternatives></inline-formula>. The compact localized states (CLSs) within the flat band <i>E</i><sub>0</sub> are localized in one unit cell, indicating that the system is characterized by the <i>U</i> = 1 class. Conversely, for <i>A</i> = –1, there are two flat bands in the system: <inline-formula><tex-math id="M218">\begin{document}$E_{\pm}=\pm\sqrt{t^2 + 4}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M218.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M218.png"/></alternatives></inline-formula>. The CLSs within the flat bands are localized in two unit cells, indicating that the system is marked by the <i>U</i> = 2 class. After introducing quasi-periodic modulations <inline-formula><tex-math id="M219">\begin{document}$\varepsilon_n^{\beta}=\lambda_{\beta}\cos(2\pi\alpha n + \phi_{\beta})$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M219.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M219.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M220">\begin{document}$\beta=\{a,b\}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M220.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M220.png"/></alternatives></inline-formula>), delocalization-localization transitions can be observed by numerically calculating the fractal dimension <i>D</i><sub>2</sub> and imaginary part of the energy spectrum <inline-formula><tex-math id="M221">\begin{document}$\ln{|{\rm{Im}}(E)|}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M221.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M221.png"/></alternatives></inline-formula>. Our findings indicate that the symmetry of quasi-periodic modulations plays an important role in determining the localization properties of the system. For the case of <inline-formula><tex-math id="M222">\begin{document}$U=1$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M222.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M222.png"/></alternatives></inline-formula>, the symmetric quasi-periodic modulation leads to two independent spectra <inline-formula><tex-math id="M223">\begin{document}$\sigma_f$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M223.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M223.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M224">\begin{document}$\sigma_p$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M224.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M224.png"/></alternatives></inline-formula>. The <inline-formula><tex-math id="M229">\begin{document}$\sigma_f$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M229.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M229.png"/></alternatives></inline-formula> retains its compact properties, while the <inline-formula><tex-math id="M225">\begin{document}$\sigma_p$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M225.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M225.png"/></alternatives></inline-formula> owns an extended-localized transition at <inline-formula><tex-math id="M226">\begin{document}$\lambda_{{\mathrm{c}}1}=4M$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M226.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M226.png"/></alternatives></inline-formula> with <inline-formula><tex-math id="M230">\begin{document}$M=\max\{{\mathrm{e}}^{h},\;{\mathrm{e}}^{ - h}\}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M230.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M230.png"/></alternatives></inline-formula>. However, in the case of antisymmetric modulation, the system exhibits an exact mobility edge <inline-formula><tex-math id="M227">\begin{document}$\lambda_{{\mathrm{c}}2}=2\sqrt{2|E - t|M}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M227.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M227.png"/></alternatives></inline-formula>. For the <i>U</i> = 2 class, all the eigenstates remain localized under any symmetric quasi-periodic modulation. In the case of antisymmetric modulation, all states transition from multifractal to localized states as the modulation strength increases, with a critical point at <inline-formula><tex-math id="M228">\begin{document}$\lambda_{{\mathrm{c}}3}=4M$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M228.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240510_M228.png"/></alternatives></inline-formula>. This work expands the understanding of localization properties in non-Hermitian flat-band systems and provides a new perspective on delocalization-localization transitions.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3