High-pressure high-temperature induced polymerization of nitrogen molecules under restricted condition

Author:

Guo Lin-Lin,Zhao Zi-Tong,Sui Ming-Hong,Wang Peng,Liu Bing-Bing,

Abstract

Polymeric nitrogen has been recognized to be a new type of high-energy density material (HEDM). However, the polymeric nitrogen structure formed under high-pressure and high-temperature conditions is usually in poor thermodynamic stability. Confinement strategy is conductive to the stabilization of the high-pressure phase of polymeric nitrogen structures, providing a new modulation approach for realizing the polymerization of nitrogen. In this work, nitrogen molecules are confined into the boron nitride nanotubes (N<sub>2</sub>@BNNTs) under high-pressure condition. The pressure-induced polymerization of nitrogen in N<sub>2</sub>@BNNT samples with varying nitrogen content and the stabilities of polymeric nitrogen structure are characterized by high-pressure <i>in situ</i> Raman spectroscopy method. In the N<sub>2</sub>@BNNT sample with higher nitrogen content, the N<sub>2</sub> confined to boron nitride nanotubes exhibits different Raman spectral pressure response behaviors compared with that of non confined N<sub>2</sub>, but both of them are transformed into cg-N structure after laser heating at about 123 GPa. With pressure decreasing to 40 GPa, the unconfined cg-N decomposes and releases huge energy, which affects the stability and results in the decomposition of the confined cg-N. Under ambient conditions, the confined N<sub>2</sub> is stabilized in the liquid phase. In the N<sub>2</sub>@BNNTs sample with lower nitrogen content, the confined N<sub>2</sub> is transformed into new polymeric nitrogen structure, which possesses N=N double bonds with different bond lengths close to the those in the <inline-formula><tex-math id="Z-20240409215933">\begin{document}${\mathrm{N}}_3^- $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20240173_Z-20240409215933.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20240173_Z-20240409215933.png"/></alternatives></inline-formula> anion and <inline-formula><tex-math id="Z-20240409215942">\begin{document}${\mathrm{N}}_4^+ $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20240173_Z-20240409215942.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20240173_Z-20240409215942.png"/></alternatives></inline-formula> clusters, respectively, after laser-heating in the pressure range of 122–150 GPa. This polynitrogen structure is stable with pressure decreasing to 25 GPa. This work provides new insights into the synthesis and stabilization of polymeric nitrogen structures, opening up new avenues for developing these advanced structures.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3