Research on pressure transmission and sealing performance of pyrophyllite in a cubic large chamber static high-pressure device

Author:

Tian Yi,Du Ming-Hao,Zhang Jia-Wei,He Duan-Wei,

Abstract

Owing to the need for a hydrostatic high-pressure cubic large cavity (hexahedral top) press used in high-pressure research and production of superhard material, two kinds of pyrophyllite powder compacts (A and B) from pyrophyllite mine in South Africa are prepared, and compared with the domestic yellow pyrophyllite powder compacts (Mentougou, Beijing) produced by the same process, to establish experimental methods and physical criteria for evaluating the pressure transmission and sealing performance of pyrophyllite. During the experiment, standard pressure materials such as Bi, Tl, and Ba are used to <i>in-situ</i> calibrate the pressure at the central positions and sealing edges of the pyrophyllite pressure chambers from the three aforementioned compacts under normal pressure conditions. Additionally, the silver melting point method is employed to obtain the corresponding relationship between chamber pressure at high temperature and system loading when using these three types of pyrophyllite as load-transmitting sealing materials. The results show that under the same hydraulic pressure loading, the difference in pressure at the central position between South African pyrophyllite B powder blocks and domestically produced pyrophyllite powder blocks does not exceed 0.1 GPa. Furthermore, in pressurization process and depressurization processe, the differences in pressure between the central position and the sealing edge of the pyrophyllite blocks are notably similar. Compared with South African pyrophyllite A powder blocks, pyrophyllite B powder blocks exhibit a closer resemblance to domestically produced pyrophyllite powder blocks in terms of high-temperature load transmission and sealing performance. Pyrophyllite B powder blocks from South Africa have the potential to serve as a substitute for domestically produced pyrophyllite without changing the existing superhard material synthesis process, making them promising candidates for use as load-transmitting media and sealing materials. These research findings hold significant academic importance in the realms of high-pressure research and superhard material production. They provide valuable insights into the selection of suitable transmission and sealing materials and the optimization of high-pressure experimental conditions. Additionally, this study presents robust method and criteria for experimental procedures and performance assessment.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference42 articles.

1. Wang H K, He D W, Xu C, Guan J W, Wang W D, Kou Z L, Peng F 2013 Chin. J. High Pressure Phys. 27 633
王海阔, 贺端威, 许超, 管俊伟, 王文丹, 寇自力, 彭放 2013 高压物理学报 27 633

2. Peng F, He D W 2018 Chin. J. High Pressure Phys. 32 010105
彭放, 贺端威 2018 高压物理学报 32 010105

3. Cui X R, Fang X H, Xing Y 2021 Superhard Mater. Eng. 33 39
崔祥仁, 方啸虎, 邢英 2021 超硬材料工程 33 39

4. He D W, Zhao Y S, Sheng T D, et al. 2003 Rev. Sci. Instrum. 74 3012

5. Yan X Z, He D W, Xu C, Ren X T, Zhou X L, Liu S Z 2012 High Press. Res. 32 482

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3