Hawking radiation from a Reissner-Nordstrom-AdS black hole with integral monopoles in extended phase space

Author:

Han Yi-Wen,Hu Cheng,Hong Yun, ,

Abstract

In recent years, thermodynamics and phase transitions of black holes in extended phase space have been extensively studied. The results show that the original first law of thermodynamics needs revising and new phase transitions will appear. However, so far, Hawking tunneling radiation has not been widely studied in the extended phase space. In particular, whether the tunneling radiation probability changes at this time is still uncertain. This work focuses on this topic, that is, to calculate the specific value of the tunneling probability in the extended phase space and ascertains whether the results obtained in the normal phase space are consistent with those in the extended phase space. The methods used herein are described below. Taking Reissner-Nordstrom-AdS black holes with global monopole for example, the cosmological parameters are regarded as dynamic variables, which is different from previous treatment methods that regard them as constants and ignore their contributions to the tunneling probability. In particular, cosmological parameters are introduced and regarded as thermodynamic pressure when the tunneling probability is calculated, and their contribution to the tunneling probability is considered. In the work the tunneling process of mass particles is mainly studied. The outgoing particles are viewed as spherical de Broglie waves, and then the relative phase velocity and group velocity are calculated. The geodesic equation is obtained according to the relationship between the two velocities, and the tunneling probability is calculated from the geodesic equation. It is concluded that the results show that the tunneling probability of the ingoing particles is proportional to the difference in the Bekenstein-Hawking entropy of the black hole before and after the particles tunnel, and the radiation spectrum deviates from the pure thermal spectrum, which is exactly the same as the case that the cosmological parameters are treated as constants. This means that the tunneling probability of particles can be obtained in the extended phase space, and the tunneling process does not depend on thermodynamic parameters. In addition, it is found that although the global monopole affects the dynamical behavior and thermodynamic quantity of the particle, it does not affect the entropy change or tunneling rate. In other words, the conclusion that the tunneling probability in extended phase space is exactly the same as that in normal phase space does not depend on the space-time topology.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3