Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers

Author:

Tan Cong,Wang Deng-Long,Dong Yao-Yong,Ding Jian-Wen, ,

Abstract

<sec>Compared with light, the solitons, which are from the balance between dispersion and nonlinearity of the system, possess high stability and fidelity as the information carries in quantum information processing and transmission, and have gained considerable attention in ultra-cold atomic electromagnetically induced transparent (EIT) media. To date, the EIT models on the three-level ultra-cold atoms realized experimentally, are ladder-, <inline-formula><tex-math id="M1">\begin{document}$\Lambda $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M1.png"/></alternatives></inline-formula>-, and V-type mode. Current studies show that the solitons cannot be stored in V-type three-level ultra-cold atomic EIT media but they can be stored in ladder- and<inline-formula><tex-math id="M2">\begin{document}$\Lambda $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M2.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M2.png"/></alternatives></inline-formula>-type three-level ultra-cold atomic EIT media. It is mainly because the atoms of the V-type system initially are in a excited state, while the atoms of the ladder- and <inline-formula><tex-math id="M3">\begin{document}$\Lambda $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M3.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M3.png"/></alternatives></inline-formula>-type systems initially are in the ground state. For the practical applications, it is a large challenge to control accurately the solitons stored in the ultra-cold atomic EIT media due to their ultralow temperature and rarefaction. Fortunately, with the maturity of semiconductor quantum technology, quantum dots have extensively application prospect in quantum information processing and transmission. However, the solitons cannot be stored in V-type three level InAs/GaAs quantum dot EIT media either, while it can be stored in ladder-type system and <inline-formula><tex-math id="M4">\begin{document}$\Lambda $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M4.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20232006_M4.png"/></alternatives></inline-formula>-type system.</sec><sec>Therefore, herein we propose a V-type three-level nitrogen-vacancy (NV) center EIT model in which a weakprobe field and a strong control field are coupled to different energy levels of NV center in diamond. Subsequently, the linear and nonlinear properties of system are studied by using semiclassical theory combined with multi-scale method. It is shown that when control field is turned on, the linear absorption curve of the system presents an EIT window. And the width of the EIT window increases with the strength of magnetic induction of the control field increasing. In the nonlinear case, the solitons formed can stably propagate over a long distance. Interestingly, the solitons can be stored and retrieved by switching off and on the magnetic field of control field. Moreover, the amplitude of the stored solitons can be modulated by the magnetic induction strength of control field. This result indicates that solitons as information carriers in quantum information processing and transmission of NV center can greatly improve the fidelity of information processing.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3