Random two-body dissipation induced non-Hermitian many-body localization

Author:

Liu Jing-Hu,Xu Zhi-Hao, ,

Abstract

<sec>Recent researches on disorder-driven many-body localization (MBL) in non-Hermitian quantum systems have aroused great interest. In this work, we investigate the non-Hermitian MBL in a one-dimensional hard-core Bose model induced by random two-body dissipation, which is described by</sec><sec>           <inline-formula><tex-math id="M1">\begin{document}$ \hat{H}=\displaystyle\sum\limits_{j}^{L-1}\left[ -J\left( \hat{b}_{j}^{\dagger}\hat{b}_{j+1}+\hat {b}_{j+1}^{\dagger}\hat{b}_{j}\right) +\frac{1}{2}\left( U-{\mathrm{i}}\gamma_{j}\right) \hat{n}_{j}\hat{n}_{j+1}\right] \notag,$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M1.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M1.png"/></alternatives></inline-formula> </sec><sec>with the random two-body loss <inline-formula><tex-math id="M2">\begin{document}$\gamma_j\in\left[0,W\right]$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M2.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M2.png"/></alternatives></inline-formula>. By the level statistics, the system undergoes a transition from the AI<inline-formula><tex-math id="M3">\begin{document}$^{\dagger}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M3.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M3.png"/></alternatives></inline-formula> symmetry class to a two-dimensional Poisson ensemble with the increase of disorder strength. This transition is accompanied by the changing of the average magnitude (argument) <inline-formula><tex-math id="M4">\begin{document}$\overline{\left\langle {r}\right\rangle}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M4.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M4.png"/></alternatives></inline-formula> (<inline-formula><tex-math id="M5">\begin{document}$\overline{-\left\langle \cos {\theta}\right\rangle }$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M5.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M5.png"/></alternatives></inline-formula>) of the complex spacing ratio, shifting from approximately 0.722 (0.193) to about 2/3 (0). The normalized participation ratios of the majority of eigenstates exhibit finite values in the ergodic phase, gradually approaching zero in the non-Hermitian MBL phase, which quantifies the degree of localization for the eigenstates. For weak disorder, one can see that average half-chain entanglement entropy <inline-formula><tex-math id="M8">\begin{document}$\overline{\langle S \rangle}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M8.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M8.png"/></alternatives></inline-formula> follows a volume law in the ergodic phase. However, it decreases to a constant independent of <i>L</i> in the deep non-Hermitian MBL phase, adhering to an area law. These results indicate that the ergodic phase and non-Hermitian MBL phase can be distinguished by the half-chain entanglement entropy, even in non-Hermitian system, which is similar to the scenario in Hermitian system. Finally, for a short time, the dynamic evolution of the entanglement entropy exhibits linear growth with the weak disorder. In strong disorder case, the short-time evolution of <inline-formula><tex-math id="M9">\begin{document}$\overline{S(t)}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M9.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M9.png"/></alternatives></inline-formula> shows logarithmic growth. However, when <inline-formula><tex-math id="M10">\begin{document}$t\geqslant10^2$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M10.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M10.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$\overline{S(t)}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M11.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M11.png"/></alternatives></inline-formula> can stabilize and tend to the steady-state half-chain entanglement entropy <inline-formula><tex-math id="M12">\begin{document}$\overline{ S_0 }$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M12.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M12.png"/></alternatives></inline-formula>. The results of the dynamical evolution of <inline-formula><tex-math id="M13">\begin{document}$\overline{S(t)}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M13.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M13.png"/></alternatives></inline-formula> imply that one can detect the occurrence of the non-Hermitian MBL by the short-time evolution of <inline-formula><tex-math id="M14">\begin{document}$\overline{S(t)}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M14.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M14.png"/></alternatives></inline-formula>, and the long-time behavior of <inline-formula><tex-math id="M15">\begin{document}$\overline{S(t)}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M15.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="7-20231987_M15.png"/></alternatives></inline-formula> signifies the steady-state information.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3