Author:
Zhang Qi-Fan,Le Wen-Cheng,Zhang Yu-Hao,Ge Zhong-Xin,Kuang Zhi-Qiang,Xiao Sheng-Yang,Wang Lu, ,
Abstract
Recent studies based on the PLT, EAST, WEST, ASDEX-upgrade, JET and other tokamaks have shown that the accumulation of heavy impurities in the core regime is unavoidable, which may lead to the degradation of the plasma confinement and even trigger the major disruptions. The plasma thermal energy loss during the major disruptions mainly occurs during the fast thermal quench (TQ) stage. However, there is no comprehensive physical explanation for the scaling of the timescale of this stage. Tungsten as high Z impurity, which will be used as the wall material in International Thermonuclear Experimental Reactor (ITER), has strong radiation power, and may affect the thermal energy loss during the fast TQ. This work considers both the thermal diffusion induced by the stochastic magnetic fields and the radiation from tungsten impurities as the dominant thermal loss mechanisms in this stage, and construct a one-dimensional model of electron temperature evolution in tokamak plasmas. We numerically calculate and analyze the evolution of the electron temperature in this stage with the typical ITER-like parameters, and here are our main conclusions: (1) The order of magnitude of the fast TQ timescale is mainly determined by the level of thermal diffusion. However, the radiation from tungsten impurities can quantitively influence on the timescale of fast TQ and the electron temperature in the late phase of fast TQ. The higher the tungsten concentration, the shorter the TQ timescale and the lower the electron temperature it will lead to in the late phase. Both the numerical and analytical results show that the timescale is approximately linear with the tungsten impurity concentration. (2) Based on the evolution of the global energy loss and the global power loss during the fast TQ, it can be found that the global thermal energy loss via the radiation from tungsten impurities is much smaller than that via the thermal diffusion induced by the stochastic magnetic fields during the early phase of fast TQ stage. However, in the late phase of fast TQ stage, the global radiation power can be comparable to or even greater than that of the global thermal diffusion power. This is also the reason why the electron temperature in the late phase of fast TQ decreases as the concentration of tungsten impurities increases. Therefore, the contribution of the radiation from tungsten impurities to the thermal loss cannot be ignored in the late phase of fast TQ.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Reference33 articles.
1. Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M, Neilson G H 1988 Nucl. Fusion 28 2199
2. Troyon F, Gruber R, Sauremann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209
3. Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128
4. ITER Physics Expert Group On Disruptions, Plasma Control, MHD, ITER Physics Basis Editors 1999 Nucl. Fusion 39 02251
5. Strait E J, Lao L L, Luxon J L, Reis E E 1991 Nucl. Fusion 31 527