AlGaAs photocathode with enhanced response at 532 nm
-
Published:2024
Issue:11
Volume:73
Page:118503
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Wang Dong-Zhi,Zhang Yi-Jun,Li Shi-Man,Tong Ze-Hao,Tang Song,Shi Feng,Jiao Gang-Cheng,Cheng Hong-Chang,Fu Rong-Guo,Qian Yun-Sheng,Zeng Yu-Gang, , ,
Abstract
The AlGaAs photocathode can be used in the field of underwater optical communication because of its fast response speed and adjustable spectral response range. In order to solve the problem that the low light absorption of the AlGaAs emission layer limits the improvement of its quantum efficiency, the distributed Bragg reflector (DBR) structure is used to reflect the light at a specific wavelength back to the emission layer to further increase the absorption rate, thus improving the response capability of the photocathode at 532 nm. The spectral response model of the AlGaAs photocathode with DBR structure is obtained by solving one-dimensional continuity equation. The optical model of the AlGaAs photocathode with enhanced response at 532 nm is established by the finite-difference time-domain method. The effects of the sublayer periodic pairs, the sublayer material and the thickness of emission layer and buffer layer on the absorption rate of emission layer are analyzed. The light absorption distributions of AlGaAs photocathode with and without DBR structure are compared, and the influence mechanism of DBR structure on the blue-green light absorption capacity of AlGaAs photocathode emission layer is clarified, which can provide a theoretical basis for designing its structural parameters. The results show that the DBR structure with a periodic pair of 20 and Al<sub>0.7</sub>Ga<sub>0.3</sub>As/AlAs has the best reflection effect on 532 nm light. Based on the DBR structure, when the thickness of the emission layer and buffer layer are 495 nm and 50 nm, respectively, the emission layer has the best absorption rate of 532 nm light. Furthermore, two kinds of AlGaAs photocathodes with and without DBR structure are prepared by the metal-organic chemical vapor deposition technology, and the reflectivity and profile structure of the grown samples are characterized. Then the Cs/O activation experiments are performed to compare the spectral response curves. It is found that the spectral response of the AlGaAs photocathode sample with DBR structure at 532 nm wavelength is about twice that of the sample without DBR structure.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Reference27 articles.
1. Guo X, Shi F, Jia T T, Zhang R Y, Du J J, Chen P, Wu H Y, Cheng H C, Zhang Y J 2023 IEEE Photonics J. 15 6801005 2. Schindler P, Riley D C, Bargatin I, Sahasrabuddhe K, Schwede J W, Sun S, Pianetta P, Shen Z X, Howe R T, Melosh N A 2019 ACS Energy Lett. 4 2436 3. Bae J K, Andorf M, Bartnik A, Galdi A, Cultrera L, Maxson J, Bazarov I 2022 AIP Adv. 12 095017 4. Liang Y T, Yang Y B, Zhao Y X 2020 Physics 49 525 梁羽铁, 杨一玻, 赵宇翔 2020 物理 49 525 5. Morishita H, Ohshima T, Otsuga K, Kuwahara M, Agemura T, Ose Y 2021 Ultramicroscopy 230 113386
|
|