Effect of electron irradiation on perovskite films and devices for novel space solar cells

Author:

Luo Pan,Li Xiang,Sun Xue-Yin,Tan Xiao-Hong,Luo Jun,Zhen Liang, ,

Abstract

Perovskite solar cells (PSCs) are considered as one of the strong contenders for next-generation space solar cells due to their advantages of high efficiency, low cost, high specific power, and remarkable irradiation resistance compared with those of silicon-based and III-V compound solar cells. At present, one focuses on the irradiation effects of perovskite solar cells, but there are a few studies on the irradiation damage mechanism of the core perovskite film. To advance the spatial application of perovskite solar cells, this study conducts a comprehensive examination of the performance fluctuations exhibited by mixed-cation perovskite films and solar cells under electron irradiation. Initially, the Monte Carlo method is employed to simulate and predict the effect of electron irradiation on perovskite solar cells. Subsequently, in conjunction with the microstructure characterization and the comparison of optical/electrical performance of perovskite films before and after irradiation, the irradiation damage mechanism of film is elucidated and the electron irradiation reliability of perovskite solar cells is evaluated. The research demonstrates that mixed-cation perovskite film and solar cells exhibit outstanding resistance to electron irradiation. Even when exposed to 100 keV electron irradiation with a cumulative fluence of 5×10<sup>15</sup> e·cm<sup>–2</sup>, the PSCs maintain an average power conversion efficiency of 17.29%, retaining approximately 85% of their initial efficiency. This study provides sound theoretical and experimental evidence for designing the irradiation-resistant reinforcement of new-generation space solar cells, contributing to the improvement of their operational performance and reliability in space applications.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3