Research progress of ultracold ion source

Author:

Zhou Wen-Chang,Fang Feng,Luo Chang-Jie,Mou Hong-Jin,Lu Liang,Zou Li-Ping,Cheng Rui,Yang Jie,Du Guang-Hua, , , , ,

Abstract

<sec>Nanobeam is an advanced technology for preparing charged ion beams with spot diameters on a nanometer scale, and mainly used for high-resolution and high-precision ion beam analysis, ion beam fabrication and ion beam material modification research. The nanobeam devices play an important role in realizing material analysis, micro/nano fabrication, microelectronic device manufacturing and quantum computing. The high-quality ion source is one of the key components of nanobeam device, the performance of which directly affects the resolution and precision of the nanobeam system. However, the traditional ion source used in this system is limited to available ionic species, large energy spread and complex structure. These issues hinder their ability to meet emerging application scenarios that require multi-ion types and high resolution. This emphasizes the importance of creating newion sources as soon as possible.</sec><sec>With the development of laser cooling technology, ultracold ions with temperatures in the range of mK or even μK can be obtained based on photoionization of cold atoms and laser cooling of ions. The typical characteristics of low temperature and easy operation greatly promote the emergence of ultracold ion sources. The ultracold ions exhibit extremely small transverse velocity divergence, which can significantly enhance the brightness and emittance quality parameters of the ion source, bringing great opportunities for innovating nano-ion beam technology. Therefore, the research on ultracold ion sources is of great significance for achieving high-quality ion sources with higher brightness, smaller size, lower energy dispersion, more diverse ion species, and simplified structure. Here, we introduce the important achievements in basic research and application technology development of magneto-optical trap ion sources, cold atomic beam ion sources, and ultracold single ion sources from the aspects of preparation principles, generation methods, and typical applications, and review the recent research progress of ultracold ion sources. Finally, we provide an outlook on the future development and application prospects of ultracold ion sources.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3