Residual Gas Noise in Vacuum of optical Interferometer for Gravitational Wave Detection
-
Published:2024
Issue:0
Volume:0
Page:0
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Guo Xi-qing ,Zhou Jing ,Wang Chen-xi ,Qin Chen ,Guo Cheng-zhe ,Li Gang ,Zhang Peng-fei ,Zhang Tian-cai , ,
Abstract
Gravitational waves (GWs) are ripples in space time caused by most violent and energetic processes in the universe, for example, the rapid motion of massive celestial bodies. The GWs carry energy when they propagate through the universe. The detection of GWs holds significance for advancing human understanding of the nature and driving scientific and technological progress. The continual upgrading and optimization of GW detectors offer novel avenues for cosmic measurements. However, ground-based GW detectors based on a large interferometer necessitate addressing various noises which are harmful to the sensitivity of the GW detectors. Among these noises, the noise from residual gas in the light beam of the interferometer is a crucial factor to influence the sensitivity. Consequently, it is necessary to establish a vacuum system to shield the laser interferometer from the effects of gas flow. This paper focuses on China's third-generation ground-based GWs detector, conducting theoretical analysis on the influence of residual gas noise for both a 20-meter arm-length prototype and a full-scale device with a 10-kilometer arm-length. The paper establishes a theoretical model for the traversal of residual gas particles through the laser beam to analyze the effect on the beam phase. The theoretical simulations are performed to discover the relations between the residual gas noise and significant parameters such as gas pressure of the vacuum system, temperature, mass of residual gas particles, polarization rate of the residual gas, and the curvature radius of the test mass. The simulations indicate that when the residual gas pressure is below 2x10<sup>-6</sup> Pa the GW detector can achieve the enough sensitivity, 10<sup>-24</sup>/Hz<sup>1/2</sup>, within the frequency range of 10 to 10<sup>3</sup> Hz. The findings of this research offer crucial theoretical insights for the design and construction of vacuum systems in future third-generation GWs detector prototypes and full-scale devices.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference43 articles.
1. Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30 (in Chinese) [郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30] 2. Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Bauer T S, Beker M G, Belletoile A, Birindelli S, Bitossi M, Bizouard M A, Blom M, Bondu F, Bonelli L, Bonnand R, Boschi V, Bosi L, Bouhou B, Braccini S, Bradaschia C, Brillet A, Brisson V, Budzyński R, Bulik T, Bulten H J, Buskulic D, Buy C, Cagnoli G, Calloni E, Campagna E, Canuel B, Carbognani F, Cavalier F, Cavalieri R, Cella G, Cesarini E, Chassande Mottin E, Chincarini A, Cleva F, Coccia E, Colacino C N, Colas J, Colla A, Colombini M, Corsi A, Coulon J P, Cuoco E, D’Antonio S, Dattilo V, Davier M, Day R, De Rosa R, Debreczeni G, Del Prete M, Fiore L D, Lieto A D, Emilio M D P, Virgilio A D, Dietz A, Drago M, Fafone V, Ferrante I, Fidecaro F, Fiori I, Flaminio R, Fournier J D, Franc J, Frasca S, Frasconi F, Freise A, Galimberti M, Gammaitoni L, Garufi F, Gáspár M E, Gemme G, Genin E, Gennai A, Giazotto A, Gouaty R, Granata M, Greverie C, Guidi G M, Hayau J F, Heitmann H, Hello P, Hild S, Huet D, Jaranowski P, Kowalska I, Królak A, Leroy N, Letendre N, Li T G F, Lorenzini M, Loriette V, Losurdo G, Majorana E, Maksimovic I, Man N, Mantovani M, Marchesoni F, Marion F, Marque J, Martelli F, Masserot A, Michel C, Milano L, Minenkov Y, Mohan M, Morgado N, Morgia A, Mosca S, Moscatelli V, Mours B, Neri I, Nocera F, Pagliaroli G, Palladino L, Palomba C, Paoletti F, Pardi S, Parisi M, Pasqualetti A, Passaquieti R, Passuello D, Persichetti G, Pichot M, Piergiovanni F, Pietka M, Pinard L, Poggiani R, Prato M, Prodi G A, Punturo M, Puppo P, Rabeling D S, Rácz I, Rapagnani P, Re V, Regimbau T, Ricci F, Robinet F, Rocchi A, Rolland L, Romano R, Rosińska D, Ruggi P, Sassolas B, Sentenac D, Sperandio L, Sturani R, Swinkels B L, Toncelli A, Tonelli M, Torre O, Tournefier E, Travasso F, Vajente G, Van Den Brand J F J, Van Der Putten S, Vasuth M, Vavoulidis M, Vedovato G, Verkindt D, Vetrano F, Viceré A, Vinet J Y, Vocca H, Was M, Yvert M 2010 Class. Quantum Grav. 27 194011 3. Ringwald A, Tamarit C 2022 Phys.Rev.D 106 063027 4. Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118 (in Chinese) [吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118] 5. Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62
|
|