Residual Gas Noise in Vacuum of optical Interferometer for Gravitational Wave Detection

Author:

Guo Xi-qing ,Zhou Jing ,Wang Chen-xi ,Qin Chen ,Guo Cheng-zhe ,Li Gang ,Zhang Peng-fei ,Zhang Tian-cai , ,

Abstract

Gravitational waves (GWs) are ripples in space time caused by most violent and energetic processes in the universe, for example, the rapid motion of massive celestial bodies. The GWs carry energy when they propagate through the universe. The detection of GWs holds significance for advancing human understanding of the nature and driving scientific and technological progress. The continual upgrading and optimization of GW detectors offer novel avenues for cosmic measurements. However, ground-based GW detectors based on a large interferometer necessitate addressing various noises which are harmful to the sensitivity of the GW detectors. Among these noises, the noise from residual gas in the light beam of the interferometer is a crucial factor to influence the sensitivity. Consequently, it is necessary to establish a vacuum system to shield the laser interferometer from the effects of gas flow. This paper focuses on China's third-generation ground-based GWs detector, conducting theoretical analysis on the influence of residual gas noise for both a 20-meter arm-length prototype and a full-scale device with a 10-kilometer arm-length. The paper establishes a theoretical model for the traversal of residual gas particles through the laser beam to analyze the effect on the beam phase. The theoretical simulations are performed to discover the relations between the residual gas noise and significant parameters such as gas pressure of the vacuum system, temperature, mass of residual gas particles, polarization rate of the residual gas, and the curvature radius of the test mass. The simulations indicate that when the residual gas pressure is below 2x10<sup>-6</sup> Pa the GW detector can achieve the enough sensitivity, 10<sup>-24</sup>/Hz<sup>1/2</sup>, within the frequency range of 10 to 10<sup>3</sup> Hz. The findings of this research offer crucial theoretical insights for the design and construction of vacuum systems in future third-generation GWs detector prototypes and full-scale devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. Guo Z K, Cai R G, Zhang Y Z 2016 Sci. Technol. Rev. 34 30 (in Chinese) [郭宗宽, 蔡荣根, 张元仲 2016 科技导报 34 30]

2. Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Bauer T S, Beker M G, Belletoile A, Birindelli S, Bitossi M, Bizouard M A, Blom M, Bondu F, Bonelli L, Bonnand R, Boschi V, Bosi L, Bouhou B, Braccini S, Bradaschia C, Brillet A, Brisson V, Budzyński R, Bulik T, Bulten H J, Buskulic D, Buy C, Cagnoli G, Calloni E, Campagna E, Canuel B, Carbognani F, Cavalier F, Cavalieri R, Cella G, Cesarini E, Chassande Mottin E, Chincarini A, Cleva F, Coccia E, Colacino C N, Colas J, Colla A, Colombini M, Corsi A, Coulon J P, Cuoco E, D’Antonio S, Dattilo V, Davier M, Day R, De Rosa R, Debreczeni G, Del Prete M, Fiore L D, Lieto A D, Emilio M D P, Virgilio A D, Dietz A, Drago M, Fafone V, Ferrante I, Fidecaro F, Fiori I, Flaminio R, Fournier J D, Franc J, Frasca S, Frasconi F, Freise A, Galimberti M, Gammaitoni L, Garufi F, Gáspár M E, Gemme G, Genin E, Gennai A, Giazotto A, Gouaty R, Granata M, Greverie C, Guidi G M, Hayau J F, Heitmann H, Hello P, Hild S, Huet D, Jaranowski P, Kowalska I, Królak A, Leroy N, Letendre N, Li T G F, Lorenzini M, Loriette V, Losurdo G, Majorana E, Maksimovic I, Man N, Mantovani M, Marchesoni F, Marion F, Marque J, Martelli F, Masserot A, Michel C, Milano L, Minenkov Y, Mohan M, Morgado N, Morgia A, Mosca S, Moscatelli V, Mours B, Neri I, Nocera F, Pagliaroli G, Palladino L, Palomba C, Paoletti F, Pardi S, Parisi M, Pasqualetti A, Passaquieti R, Passuello D, Persichetti G, Pichot M, Piergiovanni F, Pietka M, Pinard L, Poggiani R, Prato M, Prodi G A, Punturo M, Puppo P, Rabeling D S, Rácz I, Rapagnani P, Re V, Regimbau T, Ricci F, Robinet F, Rocchi A, Rolland L, Romano R, Rosińska D, Ruggi P, Sassolas B, Sentenac D, Sperandio L, Sturani R, Swinkels B L, Toncelli A, Tonelli M, Torre O, Tournefier E, Travasso F, Vajente G, Van Den Brand J F J, Van Der Putten S, Vasuth M, Vavoulidis M, Vedovato G, Verkindt D, Vetrano F, Viceré A, Vinet J Y, Vocca H, Was M, Yvert M 2010 Class. Quantum Grav. 27 194011

3. Ringwald A, Tamarit C 2022 Phys.Rev.D 106 063027

4. Wu S F, Wang N, Gong D R 2020 J. Deep Sp. Explor. 7 118 (in Chinese) [吴树范, 王楠, 龚德仁 2020 深空探测学报 7 118]

5. Clubley D A, Skeldon K D, Newton G P, Barr B W, Strain K A, Hough J 2001 Phys. Lett. A 287 62

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3