Production of single charm pentaquark based on molecular configuration

Author:

Xing Ye,Li Na,Yang Ling-Bin,Hu Xiao-Hui,

Abstract

<sec>In this work, the authors use the effective Lagrangian method to investigate the production of singly charm pentaquark state with spin parity <inline-formula><tex-math id="M14">\begin{document}$J ^ P={1/2}^{-} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M14.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M14.png"/></alternatives></inline-formula>. Based on the possible molecular state images of hadrons, the author discusses the production of singly charm pentaquark state <inline-formula><tex-math id="M15">\begin{document}${c\bar suud}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M15.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M15.png"/></alternatives></inline-formula> and decuplet baryon <inline-formula><tex-math id="M16">\begin{document}$\bar \varDelta$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M16.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M16.png"/></alternatives></inline-formula> by <inline-formula><tex-math id="M17">\begin{document}$B_{\mathrm{s}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M17.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M17.png"/></alternatives></inline-formula> meson with different molecular state configurations of <inline-formula><tex-math id="M18">\begin{document}$ND_{\mathrm{s}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M18.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M18.png"/></alternatives></inline-formula> or <inline-formula><tex-math id="M19">\begin{document}$ND ^ * _{\mathrm{s}} $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M19.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M19.png"/></alternatives></inline-formula>. To determine the coupling between pentaquark and their constituents in the molecular scheme, the authors follow the Weinberg compositeness condition to estimate the self-energy diagram of the singly charmed pentaquark. Further study on the production of pentaquark from <inline-formula><tex-math id="M20">\begin{document}$B_{\mathrm{s}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M20.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M20.png"/></alternatives></inline-formula> meson can be propeled by computing the transition matrix elements, or the triangle diagrams, which can be careful divided into two part subprocess, one associated with weak transition can be represented into form factor and decay constant, another one related to strong coupling of hadrons can be described by effective Lagrangian. Selecting the scale parameter <i>α</i> (10–200 MeV) and binding energy <i>ε</i> (5, 20, 50 MeV), the authors can find the branching ratio of the production <inline-formula><tex-math id="M23">\begin{document}$\bar B_{\mathrm{s}} \to P_ {{\mathrm{c}}\bar {{\mathrm{s}}}}\bar \varDelta $\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M23.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M23.png"/></alternatives></inline-formula>. Under the configuration of <inline-formula><tex-math id="M24">\begin{document}$ND_{\mathrm{s}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M24.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M24.png"/></alternatives></inline-formula> molecule, the branching ratio of the Cabibbo allowed process <inline-formula><tex-math id="M25">\begin{document}$\bar B_{\mathrm{s}} \rightarrow P_{{{\mathrm{c}} \bar{{\mathrm{s}}}}} \bar \varDelta$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M25.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M25.png"/></alternatives></inline-formula> can reach to order of <inline-formula><tex-math id="M26">\begin{document}$10^{-5}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M26.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M26.png"/></alternatives></inline-formula>. Moreover, the production branching ratio of <inline-formula><tex-math id="M27">\begin{document}$ND^*_{\mathrm{s}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M27.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M27.png"/></alternatives></inline-formula> molecule is only at the order of <inline-formula><tex-math id="M28">\begin{document}$10^{-8}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M28.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M28.png"/></alternatives></inline-formula>. </sec><sec>A increasing scale parameter <i>α</i> can significantly improve the production branching ratio of the singly charm pentaquark. In addition, the binding energy and the coupling constants will also affect the magnitude of production. Therefore, considering the above factors, the production branching ratio of singly charm pentaquark in <inline-formula><tex-math id="M29">\begin{document}$B_{\mathrm{s}}$\end{document}</tex-math><alternatives><graphic specific-use="online" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M29.jpg"/><graphic specific-use="print" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20240447_M29.png"/></alternatives></inline-formula> decays have considerable results, which is worth experimental and theoretical research in the future. The findings of our work can provide a reference for the experimental search and study of singly charm pentaquark, and it is hoped that they will be verified in future experimental detections at <i>B</i> factories such as LHCb, Belle, and BaBar.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Reference41 articles.

1. Aaij R, Advea B, Adinolfi M, et al. 2015 Phys. Rev. Lett. 115 072001

2. Aaij R, Abellán Beteta C, Adeva B, et al. 2019 Phys. Rev. Lett. 122 222001

3. Aaij R, Abellán Beteta C, Ackernley T, et al. 2021 Sci. Bull. 66 1278

4. Aaij R, Abdelmotteleb A S W, Abellán Beteta C, et al. 2022 Phys. Rev. Lett. 128 062001

5. Santopinto E, Giachino A 2017 Phys. Rev. D 96 014014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3