509 nm high power wide-tuned external cavity surface emitting laser

Author:

Wang Tao,Peng Xue-Fang,He Liang,Shen Xiao-Yu,Zhu Ren-Jiang,Jiang Li-Dan,Tong Cun-Zhu,Song Yan-Rong,Zhang Peng, , , ,

Abstract

High power widely tunable green lasers have potential applications in many fields such as biomedicine, lidar, laser spectroscopy, laser display, underwater wireless optical communication, and fine processing of nonferrous metals. Vertical-external-cavity surface-emitting lasers, also known as semiconductor disk lasers, have the advantages of high power, good beam quality, and wide bandwidth of gain medium. In this work, a gain chip with a reverse-growth epitaxy structure and an emitting wavelength of 1018 nm is designed. In the DBR reflection spectrum, a bandwidth of 74 nm is achieved above a reflectivity of greater than 99.1%, laying a solid foundation for achieving high-power widely tunable output. The laser cavity combines a 1018 nm semiconductor gain chip, a folded mirror, and a plane mirror to construct a compact V-type resonant cavity. A class-I phase-matched LBO nonlinear crystal with a length of 10 mm is placed at the beam waist of the cavity to realize an efficient frequency doubling process to produce a 509 nm green laser. To meet the requirement for the polarization during frequency conversion and to tune the oscillating wavelength of the laser, a birefringent filter (BRF) is employed in the laser resonant cavity. When the thickness of the used BRF is 1 mm, the obtained wavelength tuning range of the fundamental laser and the frequency doubled green laser are 47.1 nm and 20.1 nm, respectively, showing a good tuning capability of the laser. The laser’s performance varies with the thickness of the BRF. When using a 2 mm BRF, a maximum power output of the frequency-doubled green laser reaches 8.23 W during continuous tuning, indicating an ideal compatibility of wide tuning characteristics with a high power output. Meanwhile, its beam quality <i>M</i> <sup>2</sup> factors are 1.00 and 1.03 in the <i>x</i>- and <i>y</i>-direction, respectively, demonstrating a near diffraction-limited excellent beam quality. This green laser also possesses a frequency doubling conversion efficiency of up to 68.2%, which can efficiently converse the fundamental laser into the frequency doubled green laser. The optical-to-optical conversion efficiency from the absorbed pump light to the frequency-doubled green light also reaches 16.6%. Meanwhile, from the spectral linewidths of the green lasers under different thickness values of BRFs it is found that the thicker the BRF, the narrower the laser line width is, which is consistent with the theoretical result.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3