Effect of imaginary potential energy with parity-time symmetry on the band structures and edge states of T-graphene

Author:

Jiang Cui ,Li Jia-Rui ,Qi Di ,Zhang Lian-Lian

Abstract

This paper investigates the regulatory effect of non-Hermitian mechanisms on energy spectra and edge states by applying a single or double layer of imaginary potentials with PT symmetry on both sides of the T-graphene ribbon. The findings indicate that the type of imaginary potential application has a significant modulation effect on the energy band structure and localization of the system. Specifically, when the imaginary potentials are applied to the outermost monolayer lattice point of the ribbon, the energy of the edge states appears in the imaginary part. For its probability density distribution, its locality changes from being localized on both sides to one side and becomes stronger with the increase of imaginary potentials. Additionally, the PT symmetry phase transition occurs in the topologically trivial region. Notably, as the imaginary potentials reach a critical value, new imaginary-energy edge states emerge within the bulk state energy gap and also show the phenomenon that the localization is on one side of the system. Furthermore, when double-layer imaginary potentials are applied, two different edge states will appear in the system. The first type appears in the top and bottom bands, localized on one side of the system. The second type emerges in the middle of the second and third energy bands, displaying relatively weak localization and not penetrating the energy gap. This work helps to understand the regulatory effect of the edge imaginary potentials of PT symmetry on the physical properties of T-graphene structures.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3