Author:
Liu Jin-Pin,Wang Bing-Zhong,Chen Chuan-Sheng,Wang Ren,
Abstract
Using physics-informed neural networks to solve physical inverse problems is becoming a trend. However, it is difficult to solve the scheme that only introduces physical knowledge through the loss function. Constructing a reasonable loss function to make the results converge becomes a challenge. To address the challenge of physics-informed neural network models for inverse design of electromagnetic devices, a deep physics-informed neural network is introduced by using the mode matching method. The physical equations have been integrated into the network structure when the network is constructed. This feature makes the deep physics-informed neural network have a more concise loss function and higher computational efficiency when solving physical inverse problems. In addition, the training parameters of deep physics-informed neural networks are physically meaningful compared with those of traditional physics-informed neural networks. Users can control the network by parameters more easily. Taking the scattering parameter design of a two-port waveguide for example, we present a new metal topology inverse design scheme and give a detailed explanation. In numerical experiments, we target a set of physically realizable scattering parameters and inversely design the metallic septum by using a deep physics-informed neural network. The results show that the method can not only achieve the design target but also obtain solutions with different topologies. The establishment of multiple solutions is extremely valuable in implementing the inverse design. It can allow the designer to determine the size and location of the design area more freely while achieving the performance requirements. This scheme is expected to promote the application and development of the inverse design of electromagnetic devices.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference23 articles.
1. Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L 2019 Rev. Mod. Phys. 91 045002
2. Kim B, Lee S, Kim J 2020 Sci. Adv. 6 eaax9324
3. Li L, Wang L G, Teixeira F L, Liu C, Nehorai A, Cui T J 2018 IEEE Trans. Antennas Propag. 67 1819
4. Yang R, Xu X, Li X, Wang L, Pu F 2020 IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium Waikoloa, HI, USA, September 26–October 2, 2020 pp1743–1746
5. Shen C, Krenn M, Eppel S, Aspuru-Guzik A 2021 Mach. Learn. -Sci. Technol. 2 03LT02
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献