Orbital angular momentum mode femtosecond fiber laser with over 100 MHz repetition rate

Author:

Hang Wu ,Liao Chen ,Shuai Li ,Yvfan Du ,Chi Zhang ,Xinliang Zhang ,

Abstract

Orbital Angular Momentum (OAM) lasers have potential demand in many applications such as large capacity communication systems, laser processing, particle manipulation and quantum optics. OAM mode femtosecond fiber laser has become the research focus with the advantages of simple structure, low cost and high peak power. The current OAM mode femtosecond fiber lasers have made breakthroughs in the repetition frequency, pulse width, spectrum width and other key parameters, but it is difficult to achieve good overall performance. Besides, the repetition rate is currently in tens of MHz. In this paper, a large-bandwidth mode coupler is made based on the mode phase matching principle. Among them, the first order mode coupler with 3dB polarization dependent loss is made by the technology of strong fused biconical taper, and the second order mode coupler with 0.3dB polarization dependent loss is made by the technology of weak fused biconical taper. Combined with the nonlinear polarization rotation mode-locking mechanism, OAM mode femtosecond fiber lasers with over 100 MHZ repetition rate are built. The achievement of the key parameters is attributed to the selection of dispersion shifted fibers that can accurately adjust intracavity dispersion. Compared to traditional dispersion compensation fibers (DCF), the group velocity dispersion is reduced by an order of magnitude, so it can better adjust intracavity dispersion to achieve the indicators of large spectral bandwidth and narrow pulse width. In addition, the diameter of the fiber is 8μm, which is the same as that of a single mode fiber. Compared to DCF, the fusion loss can be ignored, so only a shorter gain Erbium-doped fiber is required that ensure a shorter overall cavity length and achieve high repetition frequency. The experimental results show that the first order OAM mode fiber laser has 113.6 MHz repetition rate, 98 fs half-height full pulse width, and 101nm 10-dB bandwidth. Second-order OAM mode fiber laser has 114.9 MHz repetition rate, 60 fs half-height full pulse width, and 100nm 10-dB bandwidth. Compared with the reported schemes, our scheme has better performance in key parameters such as repetition rate, pulse width and spectral width. We believe that the OAM mode fiber laser with good over performance is expected to be more widely used in OAM communication, particle manipulation and other research fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3