Molecular dynamics simulation of infrared absorption spectra of one-dimensional ordered single-file water

Author:

Zhang Qi-Lin,Wang Rui-Feng,Zhou Tong,Wang Yun-Jie,Liu Qi, ,

Abstract

Compared with bulk water (BW), the water in nanochannels usually shows unique structural and dynamic properties, which is still unable to be effectively detected and characterized by existing experimental techniques. The spectrum is an effective technical means for studying and identifying the material composition and characteristics. In this study, the infrared absorption spectra of one-dimensional ordered single-file water (SW) confined in (6, 6) single-walled carbon nanotubes are calculated by molecular dynamics simulation. It is found that the ordered arrangement of SW results in an obvious blue shift and enhancement of the spectral peak in the 0–35 THz range relative to the bulk water. The analysis shows that this phenomenon is caused by the change of coupling weight of libration vibrations (including rock, twist and wag modes) of SW. The twist vibration mode and wag vibration mode with higher frequency are relatively easy to occur because the binding energy decreases under the single chain structure of water, which results in the blue shift and enhancement of the spectral peak. Meanwhile, the present study shows that the spectral component characteristics of SW can well predict and explain the structural and dynamic properties of SW. Further, terahertz simulation experiments show that the infrared absorption capacity of SW basically conforms with the spectral distribution characteristics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3