Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet

Author:

Tang Xiu-Xing,Chen Hong-Yue,Wang Jing-Jing,Wang Zhi-Jun,Zang Du-Yang, ,

Abstract

The dynamic processes of surfactant droplets impacting onto substrates of varied temperatures have been widely studied in heat transfer, cooling and printing. In this work, we observe the impacting process of aqueous droplets of surfactants SDS, CTAB, and Triton X-100 on a hot aluminum plate via a high-speed camera, in order to study the dynamics of different surfactant droplets impacting on a hot aluminum substrate. Experimentally, it is discovered that the surfactant droplets in transition boiling produce a secondary droplet of non-wetting state in the final stage of evaporation. The analysis demonstrates that after the droplet impacts the substrate, a temperature gradient is created between the top of the droplet and the triple-phase contact line, increasing the surfactant concentration near the triple-phase contact line as compared with that of the top. The top liquid is maintained by the Marangoni effect, which is caused by the concentration gradient. In the final stage of the evaporation process, the residual droplet gradually shrinks into a sphere. It is detached from the substrate and taken off under the impulse force of the bubble explosion at the bottom, generating the secondary droplet. The radius of the secondary drop increases with the raising of initial concentration of the drop, but ultimately reaches the saturation size. This work explains the role of surfactants in forming secondary droplets. Additionally, this work provides a reference for understanding the physical mechanism of Leidenfrost effect and the controlling of boiling heat transmission.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3