Advances in response time of strong-field ionization of atoms

Author:

Che Jia-Yin,Chen Chao,Li Wei-Yan,Li Wei,Chen Yan-Jun, , , ,

Abstract

The response time of the electron to light in photoemission is difficult to define and measure. The tunneling ionization of atoms and molecules in a strong laser field is a type of strong field-induced photoelectric effect. In this process, the electron response time will change the time of high-order harmonic generation (HHG), which will have a fundamental influence on the reconstruction of electron attosecond dynamics through HHG. We propose a simple theory to resolve the response time problem in strong field atomic tunneling ionization. The response time corresponds to the strong interaction time of three bodies i.e. Coulomb, electron and laser field, which can be determined at the quantum-classical boundary. The observable directly obtained through response time can quantitatively reproduce a series of attoclock experimental curves and provide consistent explanations for these experimental phenomena. This work introduces the main conclusions of response time theory and summarizes in detail the research progress of this theory. Firstly, this theory can be applied to the orthogonal two-color laser field to quantitatively explain the main characteristic structures of photoelectron momentum distribution (PMD). Besides, with this response time theory, the scaling law of the observable in attoclock experiment can be obtained. The proposal of scaling law is expected to provide a systematical theoretical guide for better understanding the applicability or feasibility of the attoclock under different conditions. In addition, based on the atomic response time theory, we further consider the property of multi-center Coulomb potential of molecular and develop a response time theory suitable for molecular system. Subsequently, we further apply the response time theory to polar molecules, by utilizing the asymmetry of PMD closely related to response time to recognize the permanent dipole (PD) effect within the laser sub-cycle. In the end, we discuss the prospects for research on response time. Firstly, it is envisioned to further apply response time theory to weak light and single photon transition to detect the response time of related processes. Besides, considering the significant influence of response time on the property of time-domain of HHG electron trajectories, the recombination (re-scattering) effect based on the current strong field tunneling ionization response time theory can be further investigated, thus extending this theory to describing HHG and above threshold ionization (ATI) processes. Furthermore, designing the “re-scattering electron trajectories” reconstruction scheme based on the electron trajectories with response time correction will provide important suggestions for HHG spectroscopic experiments. Finally, considering the asymmetric ionization caused by the PD effect of polar molecules, if the net ionization yield of adjacent sub-cycles is used as the current indicator, polar molecules can be used as a “micro diode” to study a type of attosecond response switching device. Polar molecular diodes emit electrons through tunneling ionization in laser field. According to the response time theory, tunneling occurs almost instantaneously, and response time needs considering only at the tunneling exit. Based on this, by searching for suitable materials (such as two-dimensional materials), it is possible to design a type of semi-classical diode (which can utilize tunneling) with femtosecond or even sub-femtosecond response time. The response time theory can provide a convenient theoretical tool for designing of such tunneling diodes.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3