206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser

Author:

Shi Liang-Zhu,Zhang Meng,Chu Yu-Xi,Liu Bo-Wen,Hu Ming-Lie,

Abstract

Deep ultraviolet (DUV) femtosecond laser, which combines the advantages of high single-photon energy of DUV laser with high peak power of femtosecond laser, is widely used in scientific research, biomedicine, material processing and so on. However, in the process of generating DUV femtosecond laser based on nonlinear frequency conversion is encountered a problem that the group velocity mismatch caused by dispersion makes the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, thus making the generation of the DUV femtosecond laser very difficult. In this work, based on a Yb-doped fiber femtosecond laser, the delay line is optimized to precisely compensate for the spatial and temporal walk-off, so DUV femtosecond laser possesses the following performances: the center wavelength is 206 nm, the repetition rate is 1 MHz, the maximum output power is 102 mW, the maximum conversion efficiency is 4.25% from near infrared to DUV, the root mean square (RMS) power stability is 0.88% within 3 h, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality in the process of second harmonic generation (SHG), fourth harmonic generation (FHG) and sum-frequency generation (SFG) are also systematically studied. The experimental results provide a basis for generating DUV femtosecond laser from femtosecond fiber lasers.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3