Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces

Author:

Sun Bei-Bei,Ye Wen-Hua,Zhang Wei-Yan, ,

Abstract

The interaction between the shock and the internal density perturbation of the target material produces a Richtmyer-Meshkov-like (RM-like) instability, which couples with the ablation front and generates instability seeds. Recent studies have demonstrated the significance of internal material density perturbations to implosion performance. This paper presents a two-dimensional numerical investigation of the growth of the RM-like instability in linear region and its coupling mechanism with the interface. Euler equations in two dimensions are solved in Cartesian coordinates by using the fifth-order WENO scheme in space and the two-step Runge-Kutta scheme in time. The computational domain has a length of 200 μm in the <i>x</i>-direction and <i>λ</i><sub><i>y</i></sub> in the <i>y</i>-direction. The numerical resolution adopted in this paper is <inline-formula><tex-math id="M2">\begin{document}$ {\Delta _x} = {\Delta _y} = {\lambda _y}/128 $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="19-20230928_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="19-20230928_M2.png"/></alternatives></inline-formula>. A periodic boundary condition is used in the <i>y</i>-direction, while an outflow boundary condition is used in the <i>x</i>-direction. The interaction between shock and density perturbation will deposit vorticity in the density perturbation region. The width of the density perturbation region can be represented by the width of the vortex pair. The growth rate of the RM-like instability can be represented by the growth rate of the width of the density-disturbed region or the maximum perturbation velocity in the <i>y</i>-direction. The simulation results show that the growth rate of the vortex pair width is proportional to the perturbation wave number <i>k</i><sub><i>y</i></sub>, the perturbation amplitude <i>η</i>, and the velocity difference before and after the shock wave Δ<i>u</i>, specifically, δ<i>v</i>∝<i>k</i><sub><i>y</i></sub>Δ<i>uη</i>. In the problem of coupling the RM-like instability with the interface, we calculate the derivation of the interface perturbation amplitude with respect to time to obtain the growth rate of the interface. It is concluded from the simulations that the coupling of the RM-like instability with the interface has two mechanisms: acoustic coupling and vortex merging. When the density perturbation region is far from the interface, only acoustic wave is coupled with the interface. The dimensionless growth rate of interface perturbation caused by acoustic coupling decays exponentially with <i>k</i><sub><i>y</i></sub><i>L</i>, δ<i>v</i><sub><i>i</i></sub>/(<i>k</i><sub><i>y</i></sub>Δ<i>uη</i>)∝<inline-formula><tex-math id="M3">\begin{document}$ {{\text{e}}^{ - {k_y}L}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="19-20230928_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="19-20230928_M3.png"/></alternatives></inline-formula>. When the density perturbation region is closer to the interface, acoustic coupling and vortex merging work together. The vortex merging leads to an increase in the perturbation velocity when the Atwood number of the interface is positive. When the Atwood number is positive, reducing the Atwood number at the interface and increasing the width of the transition layer at the interface can both reduce the growth of interface perturbation caused by the RM-like instability coupling.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3