Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs

Author:

Wang Hui-Yao,Wei Fu-Xian,Wu Yu-Ting,Peng Teng,Liu Jun-Hong,Wang Bo,Xiong Zu-Hong,

Abstract

The reverse inter-system crossing (RISC, CT<sup>3</sup> → CT<sup>1</sup>) process in charge transfer (CT<sup>1</sup> and CT<sup>3</sup>) states is an effective approach to improving the energy utilization rate of excited states, and precise control and full use of the RISC process have important scientific significance and application prospect for fabricating and realizing the efficient exciplex-type organic light-emitting diodes (OLEDs). The conventional exciplex-type OLEDs based on m-MTDATA: Bphen have received extensive attention among researchers owing to the fact that the energy difference between CT<sup>1</sup> and CT<sup>3</sup> around zero promotes the efficient occurrence of RISC process. But up to now, only transient photoluminescence can infer the existence of RISC process in experiment, which is quite unfavorable for the comprehensive understanding and application of this process to design high-performance OLEDs. Fortunately, in this paper, a series of balanced and unbalanced exciplex-based devices are prepared by changing the donor-acceptor blending ratio in the emitting layer (<i>x</i>% <i>m</i>-MTDATA:<i>y</i>% Bphen; <i>x</i>%, <i>y</i>% is the weight percent) and the carrier density flowing through the device. The RISC process of CT states is directly observed via analyzing fingerprint magneto-conductance (MC) traces of the balanced device at room temperature, and the balanced device has higher electroluminescence (EL) efficiency than the unbalanced device. Specifically, the low-field MC curves of unbalanced device only show an inter-system crossing (ISC) line shape, whereas those from the balanced exciplex device present an RISC line shape at low bias-current and the conversion into an ISC line shape with the further increase of bias current. The line shape transition from RISC to ISC is attributed to the triplet-charge annihilation (TQA) process caused by excessive charge carries under high bias current. Combining the physical microscopic mechanism of device, the above-mentioned MC curves of various exciplex devices can be explained as follows: under the same bias current, extra holes or electrons are generated in the emitter layer of unbalanced devices due to the mismatch of donor-acceptor molecular concentrations. These superfluous holes or electrons will react with the CT<sup>3</sup> state, which aggravates the TQA process in the device and weakens the RISC process in which the CT<sup>3</sup> state participates. That is to say, there are strong TQA process and weak RISC process in unbalanced exciplex device. Contrarily, the strong RISC process and weak TQA process in the balanced exciplex device are beneficial to the occurrence of delayed fluorescence, resulting in its EL efficiency higher than that of the unbalanced device. This work not only deepens the physical understanding of the influence of donor-acceptor blending ratio on the carrier balance in exciplex devices, but also paves the way for designing highly efficient OLED by fully employing the RISC process of balanced device.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3