LCP /TLC based composite multi-dimensional polarization-dependent anti-counterfeiting device

Author:

Zhu Yu-Wen,Yuan Cong-Long,Liu Bing-Hui,Wang Xiao-Qian,Zheng Zhi-Gang, ,

Abstract

Modern anti-counterfeiting technology can effectively suppress and combat forgery and counterfeiting behaviors, which is of great significance in information security, national defense and economy. However, the realization of multi-dimensional, integrated, difficult-to-copy and easy-to-detect optical anti-counterfeiting devices is still a challenge. In this paper, a multi-dimensional and polarization-dependent anti-counterfeiting device with structure color is designed, which is composed of patterned liquid crystal polymer (LCP) nematic layer and thermotropic cholesteric liquid crystal (TLC) layer. It has the advantages of displaying and hiding polarization states, wide color tuning range, convenient operation, high integration and security. For incident light with a specific polarization state, the patterned nematic phase LCP layer can carry out regionalized phase editing and polarization state modulation, while the TLC layer can selectively reflect the incident light. Therefore, a patterned structural color security label is subtly realized. The anti-counterfeiting device can realize the display, hiding, color adjustment and image/background conversion of patterns by adjusting the polarization direction of incident light. In addition, the TLC layer in the device can meet the application requirements of the anti-counterfeit device at different environmental temperatures through the flexible design of the system weight ratio. Furthermore, the device can be easily heated by body temperature, realize dynamic real-time wide-spectrum color modulation and reversible pattern erasure, and further enhance its security dimension and security. The multi-polarization-type anti-counterfeiting device has three-dimensional anti-counterfeiting efficacy. The first dimensional anti-counterfeiting efficacy is achieved by the thermochromic liquid crystal layer. The thermochromic liquid crystal layer has no reflection color outside the operating temperature range of TLC material, and the entire device displays black background. The second and the third dimensional anti-counterfeiting efficacy are related to the polarization state of the incident light and the linear polarization direction, respectively. Only when the incident light is linearly polarized light and its polarization direction makes an angle of 45° or –45° with respect to the optical axis of the liquid crystal, will the device show the designed pattern. Consequently, our proposed anti-counterfeiting device is expected to provide a new idea for developing the anti-counterfeiting field.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3