Thermoelectric properties of monolayer Cu<sub>2</sub><i>X</i>

Author:

Zheng Jian-Jun,Zhang Li-Ping,

Abstract

Two-dimensional (2D) materials with lower lattice thermal conductivities and high figures of merit are useful for applications in thermoelectric (TE) devices. In this work, the thermoelectric properties of monolayer Cu<sub>2</sub>S and Cu<sub>2</sub>Se are systematically studied through first-principles and Boltzmann transport theory. The dynamic stability of monolayer Cu<sub>2</sub>S and Cu<sub>2</sub>Se through elastic constants and phonon dispersions are verified. The results show that monolayer Cu<sub>2</sub>S and Cu<sub>2</sub>Se have small lattice constants, resulting in lower phonon vibration modes. Phonon transport calculations confirm that monolayer Cu<sub>2</sub>Se has lower lattice thermal conductivity (1.93 W/(m·K)) than Cu<sub>2</sub>S (3.25 W/(m·K)) at room temperature, which is due to its small Debye temperature and stronger anharmonicity. Moreover, the heavier atomic mass of Se atom effectively reduces the phonon frequency, resulting in an ultra narrow phonon band gap (0.08 THz) and a lower lattice thermal conductivity for monolayer Cu<sub>2</sub>Se. The band degeneracy effect at the valence band maximum (VBM) of monolayer Cu<sub>2</sub>S and Cu<sub>2</sub>Se significantly increase their carrier effective mass, resulting in higher Seebeck coefficients and lower conductivities under p-type doping. The electric transport calculation at room temperature shows that the conductivity of monolayer Cu<sub>2</sub>S (Cu<sub>2</sub>Se) under n-type doping about 10<sup>11</sup> cm<sup>–2</sup> is 2.8×10<sup>4</sup> S/m (4.5×10<sup>4</sup> S/m), obviously superior to its conductivity about 2.6×10<sup>2</sup> S/m (1.6×10<sup>3</sup> S/m) under p-type doping. At the optimum doping concentration for monolayer Cu<sub>2</sub>S (Cu<sub>2</sub>Se), the n-type power factor is 16.5 mW/(m·K<sup>2</sup>) (25.9 mW/(m·K<sup>2</sup>)), which is far higher than p-type doping 1.1 mW/m·K<sup>2</sup> (6.6 mW/(m·K<sup>2</sup>)). Through the above results, the excellent figure of merit of monolayer Cu<sub>2</sub>S (Cu<sub>2</sub>Se) under optimal n-type doping at 700 K can approach to 1.85 (2.82), which is higher than 0.38 (1.7) under optimal p-type doping. The excellent thermoelectric properties of monolayer Cu<sub>2</sub>S (Cu<sub>2</sub>Se) are comparable to those of many promising thermoelectric materials reported recently. Especially, the figure of merit of monolayer Cu<sub>2</sub>Se is larger than that of the well-known high-efficient thermoelectric monolayer SnSe (2.32). Therefore, monolayer Cu<sub>2</sub>S and Cu<sub>2</sub>Se are potential thermoelectric materials with excellent performances and good application prospects. These results provide the theoretical basis for the follow-up experiments to explore the practical applications of 2D thermoelectric semiconductor materials and provide an in-depth insight into the effect of phonon thermal transport on improvement of TE transport properties.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3