Underwater polarization imaging based on two-layer multi-index optimization

Author:

Gao Chen-Dong,Zhao Ming-Lin,Lu De-He,Dou Jian-Tai,

Abstract

<sec>Underwater imaging is of great significance in exploring seabed resource , monitoring marine environment, implementing underwater rescue and military reconnaissance, etc. by providing clear vison. Among various underwater imaging techniques, the polarization imaging is considered to be an effective way to improve the quality of underwater imaging. It can realize underwater image restoration by using the difference in polarization characteristic between the target light and backscattered light. A classical underwater active polarization imaging method was presented by Treibitz [Treibitz T, Schechner Y Y <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1109/TPAMI.2008.85">2009 <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> <b>31</b> 385</ext-link>], in which the degrees of linear polarization (DoLPs) of target light and backscattered light are used to recover clear image. A variety of improved methods have been derived from this, but most of them require background areas and human-computer interaction. Then, a new underwater active polarization imaging method without prior knowledge was presented by Zhao [Zhao Y, He W, Ren H, Li Y, Fu Y <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1016/j.optlaseng.2021.106777">2022 <i>Opt. Lasers Eng.</i> <b>148</b> 106777</ext-link>], in which the DoLPs of target light and backscattered light can be automatically obtained without background region. However, sometimes the above two parameters are very close and thus introduce a lot of noise into the restored images, for this method takes only the contrast into account.</sec><sec>In this work, an underwater active polarization imaging method based on two-layer multi-index optimization is proposed. First, the mutual information and contrast are taken as the upper objective functions, and the Pareto optimal solution set is obtained by the multi-objective genetic optimization algorithm. Second, the information entropy is taken as the lower objective function to obtain the optimal parameters from this optimal solution set. Based on the optimal parameters, the restored images are obtained. According to the difference between the DoLPs of target light and backscattered light, these restored images are further improved by the digital image processing method.</sec><sec>The experimental results indicate that our method can not only enhance image details effectively but also balance various evaluation indexes of the imaging quality to obtain high-quality restored images. The proposed algorithm is suitable for underwater targets with low and high DoLPs, with or without background regions.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3