Quantum nonlocality testing of the “X” state based on the CHSH inequality in Markov environment

Author:

Zeng Bai-Yun,Gu Peng-Yu,Jiang Shi-Min,Jia Xin-Yan,Fan Dai-He,

Abstract

Quantum nonlocality is one of the most fundamental characteristics of quantum theory. As a commonly used quantum state generated in experiment, the “X” state is a typical one in the research of open quantum systems, since it remains the stability of the “X” shape during the evolution. Using the Clauser-Horne-Harmony-Holt (CHSH) inequality, the quantum nonlocality testing of two “X” states associated with local transformation operations is studied under the Markov environment. The results show that in the phase damping environment, the two “X” states have the same CHSH inequality testing results with the increase of the evolution time. Moreover, the maximum of quantum nonlocality test of the two “X” states will decrease nonlinearly. When <inline-formula><tex-math id="M1">\begin{document}$0.78 \lt F \lt 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M1.png"/></alternatives></inline-formula>, the maximum value <inline-formula><tex-math id="M2">\begin{document}${S_m}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M2.png"/></alternatives></inline-formula> of testing quantum nonlocality will gradually transition from <inline-formula><tex-math id="M3">\begin{document}${S_m} \gt 2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M3.png"/></alternatives></inline-formula> to <inline-formula><tex-math id="M4">\begin{document}${S_m} \lt 2$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M4.png"/></alternatives></inline-formula> with the increase of the evolution time of the two “X” states, and the research on the quantum nonlocality test cannot be successfully carried out. In the amplitude damping environment, the “X” state obtained by the local transformation operation has a longer evolution time for successfully testing quantum nonlocality when <inline-formula><tex-math id="M5">\begin{document}$F \gt 0.78$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M5.png"/></alternatives></inline-formula>. In particular, when <inline-formula><tex-math id="M6">\begin{document}$F = 1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M6.png"/></alternatives></inline-formula>, the “X” state with the density matrix <inline-formula><tex-math id="M7">\begin{document}${\rho _W}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M7.png"/></alternatives></inline-formula> cannot successfully test the quantum nonlocality after the evolution time <inline-formula><tex-math id="M8">\begin{document}$\varGamma t \gt 0.22$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M8.png"/></alternatives></inline-formula>. For the “X” state with density matrix <inline-formula><tex-math id="M9">\begin{document}${\tilde \rho _W}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M9.png"/></alternatives></inline-formula>, the quantum nonlocality testing cannot be performed until the evolution time <inline-formula><tex-math id="M10">\begin{document}$\varGamma t \gt 0.26$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M10.png"/></alternatives></inline-formula>. These results show that the local transformation operation of the “X” state is more conducive to the quantum nonlocality testing based on the CHSH inequality. Finally, the fidelity ranges of successfully testing the quantum nonlocality of the two “X” states in phase and amplitude damping environments are given in detail. The results show that on the premise of the successful testing of quantum nonlocality , the two types of “X” states evolving in the phase damping environment have a large range of valid fidelity. Meanwhile, for the same evolution time, the local transformation operation is helpful in improving the fidelity range of quantum nonlocality test in amplitude damping environment for “X” state with density matrix <inline-formula><tex-math id="M11">\begin{document}${\rho _W}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="5-20222218_M11.png"/></alternatives></inline-formula>.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3