Influence of local deformation on valley transport properties in the line defect of graphene

Author:

Cui Lei,Liu Hong-Mei,Ren Chong-Dan,Yang Liu,Tian Hong-Yu,Wang Sa-Ke, , , ,

Abstract

The line defect of graphene has significant applications in valleytronics, which has received extensive attention in recent years. It is found experimentally that there exists local deformation around the line defect. Current studies generally believe that the influence of local deformation on the valley transport properties can be negligible, because the modifications to the nearest neighbour hopping energy is less than 5% under the small deformation. Based on the first-principles calculations and the non-equilibrium Green’s function method, we investigated the effect of local deformation on the valley transport properties of two different kinds of line defects, the 58 ring line defect and the 57 ring line defect. It is found that for the 58 ring line defect, the effect of local deformation on the valley transmission coefficient is not evident at lower energies. However, at higher energies, the impact of local deformation is obvious, and the maximum valley transmission coefficient does not decrease with increasing energy, but can be maintained 1 within a large energy range. In contrast, the influence of local deformation on the valley transmission coefficient of the 57 ring line defect indeed can be negligible, regardless of the level of energy. Further investigation indicates that the change of the C—C bond length connected to the two defect atoms in the 58 ring plays a key role in the transmission of the valley states across the line defect. If this part of the influence is not taken into account, the valley transmission coefficient is nearly unaffected by the local deformation. The valley state enters the right side of the line defect directly through the bond connected to the line defect, so the change in bond length connected to the line defect has a significant impact on the valley transmission. This special structure does not exist in the 57 ring, where the valley states will have to pass through a narrow region containing 57 ring to enter the right side of the line defect, resulting in different valley scattering phenomena. By constructing two parallel line defects, the 100% valley polarization can be achieved in a large angular range with the 58 ring line defect. The finding has important implications for the design of graphene line defect based valley filters.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3