Author:
Yi Qi-Ru,Xiong Pei-Yu,Wang Huan-Hua,Li Gang,Wang Yun-Kai,Dong En-Yang,Chen Yu,Shen Zhi-Bang,Wu Yun,Yuan Jie,Jin Kui,Gao Chen, , ,
Abstract
High-temperature superconducting films can be used for fabricating the cutting-edge high-temperature superconducting microwave devices because of their low microwave surface resistances. However, the microwave surface resistances of high-temperature superconducting materials are particularly sensitive to microstructure due to their special two-dimensional superconducting mechanisms and extremely short superconducting coherence lengths. To investigate the correlations between microstructure and microwave surface resistance of high-temperature superconducting materials, YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-<i>δ</i></sub> (YBCO) films with different thickness are grown on (00l)-oriented MgO single-crystal substrates by using the pulsed laser deposition (PLD) technique. Electrical measurements reveal that their superconducting transition temperatures and room temperature resistances do not show significant difference. However, their microwave surface resistances in superconducting state display a significant difference. The characterizations of the microstructures of YBCO films by synchrotron radiation three-dimensional reciprocal space mapping(3D-RSM) technique show that the number of the grains with CuO<sub>2</sub> face parallel to the surface (c crystals), and the consistency of grain orientation are the main causes for the difference in microwave surface resistance.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献