Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state

Author:

Bai Jian-Nan,Han Song,Chen Jian-Di,Han Hai-Yan,Yan Dong, ,

Abstract

<sec>Owing to the unique physical characteristics of Rydberg atoms, which play an important role in quantum information and quantum computation, the theoretical and applied research of Rydberg atoms have become the hot spots of scientific research in recent years. With the large polarizability of Rydberg atoms, even a small electric field could cause a considerable electric dipole moment, resulting in a strong dipole-dipole interaction between Rydberg atoms. The multiple excitations of the Rydberg states are strongly inhibited because of the strong dipole interaction between atoms within a mesoscopic interaction (blockade) region. We call this phenomenon the dipole blockade effect. The dipole blockade effect makes it possible to build single-photon quantum devices, implement quantum gates, generate quantum entanglement, and simulate many-body quantum problems, etc.</sec><sec>A Rydberg atomic ensemble in the same blockade region can be regarded as a superatom. In the same way, if these atoms trapped in two optical dipole traps, each sub-ensemble can be considered as a sub-superatom which is closely related to the superatom. According to the fact that two Rydberg sub-superatoms can be strongly correlated due to sharing no more than one excited Rydberg atom, we study correlated collective excitation and quantum entanglement between two Rydberg sub-superatoms in a steady state. With the superatom model, the problem of exponentially increasing system size with the number of atoms can be circumvented to a certain extent in studying many-body physics. By solving the two-body Lindblad’s master equation accurately, we obtain the analytical expressions for the collective excitation probabilities of the two sub-superatoms, and the concurrence measuring the bipartite entanglement between them. Our results show that they are all sensitive to the number of atoms in each Rydberg superatom: the bigger (including more atoms) the Rydberg superatom, the higher the collective Rydberg excitation probability is. And that the maximally entangled state can only be obtained with two equal-sized Rydberg superatoms. When this condition is fulfilled, the mesoscopic entanglement can be generated by adding the number of atoms in each Rydberg superatom. This may provide an attractive platform for studying the quantum-classical correspondence and have potential promising applications in quantum information processing.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3