Acoustic field fluctuation caused by source-generated internal waves and its detection method

Author:

He Zhao-Yang,Lei Bo,Yang Yi-Xin, ,

Abstract

The development of noise reduction and silencing technology has brought great difficulties to underwater target detection, and more target characteristics need further studying. When a submerged target travels through density-stratified environment, the fluid will oscillate behind the target owing to gravity and buoyancy and generate internal waves, which are often referred to as source-generated internal waves. These internal waves are difficult to eliminate, which can cause the sound speed profiles to fluctuate. Therefore, these internal waves are expected to be effective for detecting underwater target. In this paper, the fluctuations of the received sound passing through the internal waves produced by a moving sphere are investigated. A typical shallow stratified environment is set up, and internal wave fields generated by a sphere moving in many horizontal directions are simulated. According to the simulation results, these internal wave fields have a much wider range than the scenario of the target body. Based on the relationship between the amplitude of the internal wave and the variation of sound speed, range–dependent sound speed profiles are constructed, and model based on ray acoustics is used to analyze the aberration strength of passing sound fields. Results show that the strength aberration is inversely proportional to the target passing angle, and these characteristics can be covered by the background. Focusing on this problem, an extraction method based on principal component analysis with sliding window is then proposed. The uncorrelation between the disturbance of internal wave and background signal is utilized, and interference is suppressed by removing the component in No.1 principal component space, and retaining the No.2–No.<i>k</i> subspace. Detection can be executed based on multi period received data from single hydrophone. A lake experiment is conducted to verify the performance. A detection scenario of single source and single receiver is established, and the AUV target crosses source–receiver line multiple times. The research results show that the detection scheme based on the acoustic aberration of source-generated internal wave has potential for underwater target detection, possessing the advantages of wide coverage and high robustness. Data on multi depths are processed to show that the detection performance is dependent on the depth of system. Since the acoustic strength variations are derived form local disturbance in channel, the proposed method may be affected by severe environment fluctuation, and further research is still needed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. Hu J X, Fu T X 2001 Ship. Sci. Tech. 14 2
胡家雄, 伏同先 2001 舰船科学技术 14 2

2. Tyler G D 1998 Johns Hopkins APL Technical Digest. 12 145

3. Liu G L, Ling G M, Yan Q 2007 Tech. Acoust. 26 335
刘贯领, 凌国民, 严琪 2007 声学技术 26 335

4. Hamblen D W 1998 Sea Technol. 11 59

5. Zhang H J, Qiu B H, Shi L, He P 2001 Ship. Sci. Tech. 14 6
张宏军, 邱伯华, 石磊, 贺鹏 2001 舰船科学技术 14 6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3