Imaginary-part distribution and signal improvement of lattice quantum chromodynamics data

Author:

Hong Hao-Yi,Gao Mei-Qi,Gui Long-Cheng,Hua Jun,Liang Jian,Shi Jun,Zou Jin-Tao, , , ,

Abstract

Understanding the statistical fluctuations of lattice observables over the gauge configurations is important both theoretically and practically. It provides a physical insight into tackling the famous signal-to-noise problem and the sign problem, and inspires new thoughts in developing methods to improve the signal of lattice calculations. Among many efforts, exploring the relationship between the real part and imaginary part of lattice numerical result is a new method to understand lattice signal and error, because both the real part and imaginary part come from the same sample of gauge field and their distributions on the gauge sample are related in principle. Specifically, by analyzing the distributions of the real part and imaginary part of quenched lattice two-point function with high statistics and non-zero momentum, this work proposes a possible quantitative formula connecting these two distributions as <inline-formula><tex-math id="M1">\begin{document}$R(x)=\displaystyle\int {\rm{d}}y S(y-x) \left[I(y) K(U_y)\right]$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M1.png"/></alternatives></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$R(x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M2.png"/></alternatives></inline-formula> denotes the real-part distribution, <inline-formula><tex-math id="M3">\begin{document}$I(x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M3.png"/></alternatives></inline-formula> the imaginary-part distribution, <inline-formula><tex-math id="M4">\begin{document}$S(x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M4.png"/></alternatives></inline-formula> the underlying signal distribution and <inline-formula><tex-math id="M5">\begin{document}$K(U_x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M5.png"/></alternatives></inline-formula> a kernel function of the gauge field. This theoretical assumption has universal validity because the kernel function contains the gauge field information that determines all the distributions. The formula is numerically verified by calculating the non-trivial statistical correlations of the real part and the kernel-function-modified imaginary part under the further assumption of the kernel function. It is found that the most naïve guess of <inline-formula><tex-math id="M6">\begin{document}$K(U_x)=1$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M6.png"/></alternatives></inline-formula> does not work, which leads to no statistically significant correlation. Meanwhile, the assumption that <inline-formula><tex-math id="M7">\begin{document}$K(U_x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M7.png"/></alternatives></inline-formula> is only a sign function works well, giving rise to <inline-formula><tex-math id="M8">\begin{document}$\sim70\%$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M8.png"/></alternatives></inline-formula> correlation. Then, through the process of adding random distortions to the absolute values of the imaginary part, it is found that even a slight distortion, of around 1% could result in a significant reduction in the correlation between the real part and imaginary part down to less than 50% or lower. This essentially proves that the observed <inline-formula><tex-math id="M9">\begin{document}$\sim70\%$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M9.png"/></alternatives></inline-formula> correlation is highly non-trivial and the hypothesis that <inline-formula><tex-math id="M10">\begin{document}$K(U_x)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20230869_M10.png"/></alternatives></inline-formula> is a sign function captures at least some of the physical mechanisms behind the scenes. Employing this correlation, the variance of lattice results can be improved by around 40%. It is not a significant improvement in practice; however, this study offers an innovative strategy to understand the source of statistical uncertainties in lattice QCD and to improve the signal-to-noise ratio in lattice calculation. Further research on the ability to use machine learning on various more accurate lattice data will hopefully give better instructions and constraint on the form of the kernel function.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3