Online tomography algorithm based on laser absorption spectroscopy

Author:

Zhao Rong,Zhou Bin,Liu Qi,Dai Ming-Lu,Wang Bu-Bin,Wang Yi-Hong, ,

Abstract

Conventional calibration-free wavelength modulation spectroscopy generally requires complex absorption spectrum simulations in combination with spectral databases and laser modulation parameters, placing high demands on the accuracy of a priori spectral parameters and hardware parameters. Meanwhile, inappropriate initial values can increase the computation time and even lead to local optimal solutions. In order to improve the computational efficiency, a rapid calibration-free wavelength modulation spectroscopy to obtain the integrated absorbance is presented in this work. First, this method is computationally efficient, requiring only algebraic calculations by using the 2nd, 4th, and 6th harmonic center peak height parameters to obtain the integrated absorbance, eliminating the need for computationally intensive harmonic fitting calculations. Secondly, this method has low dependence on the spectral database, requiring only line intensity and low-state energy level spectral parameters. Finally, this method is highly adaptable and does not require scanning the complete absorption spectral line shape, which solves the problem of incomplete harmonic signals caused by the conventional method at high temperature and high pressure due to the broadening of the absorption spectral line. This method has previously been used only for line-of-sight measurements at low-frequency experimental signals in stable environments, and for calculating the integrated absorbance at average temperature, concentration and pressure states. In this work, the method is applied to non-uniform complex combustion field tomography and combined with the proposed tomographic system to achieve online reconstructing temperature and concentration distributions. The accuracy and computational efficiency of the method in obtaining the integrated absorbance are verified by numerical simulations and experiments on the butane burner flame. The results show that the presented method is consistent with the reconstructed distribution compared with the conventional wavelength modulation method, with a maximum relative deviation of only 0.94% from the measurement and 3.5% from the thermocouple measurement, verifying the accuracy of the method. The computational efficiencies of the two methods for obtaining the integrated absorbance are analyzed. The average calculation time per path is 0.15 s for the present method and 21.10 s for the conventional method. The calculation efficiency of the present method is at least two orders of magnitude higher than that of the conventional method, which provides a fast and reliable research method and technical means to realize the industrial-grade online reconstruction of temperature and concentration distribution of combustion fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Hang A, Xu Z Y, Xia H H, Yao L, Ruan J, Hu J Y, Zang Y P, Kan R F 2021 Spectrosc. Spect. Anal. 41 1144
黄安, 许振宇, 夏晖晖, 姚路, 阮俊, 胡佳屹, 臧益鹏, 阚瑞峰 2021 光谱学与光谱分析 41 1144

2. Wang Y, Zhou B, Liu C 2021 IEEE Photonics Technol. Lett. 33 1487

3. Liu C, Xu L, Li F, Cao Z, Tsekenis S A, McCann H 2015 Appl. Phys. B 120 407

4. Song J L, Hong Y J, Wang G Y, Pan H 2012 Acta Phys. Sin. 61 124
宋俊玲, 洪延姬, 王广宇, 潘虎 2012 物理学报 61 124

5. Liu C, Xu L 2019 Appl. Spectrosc. Rev. 54 1

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3