Author:
Liu Yao,He Jun,Su Nan,Cai Ting,Liu Zhi-Hui,Diao Wen-Ting,Wang Jun-Min, , ,
Abstract
<sec>Single photon source is a non-classical light field with anti-bunching effect, which has a potential applications in the research of fundamental physics problems, quantum precision measurement, quantum communication, quantum computing, etc. The strong interaction between highly excited Rydberg atoms presents an excitation blockade effect. In a dense Rydberg atomic ensemble, the excitation of more than one Rydberg atom within a blockade volume is suppressed, where the interactions of Rydberg atoms shift the atomic states out of resonance with an excitation laser.</sec><sec>We consider here the generation of single photon source by using a four-wave mixing scheme in a room-temperature atomic vapor cell. In a homemade micrometer-sized atomic vapor cell, one-dimensional size is smaller than the radius of Rydberg blockade and the other two-dimensional size is limited by the size of focused laser beam. The blockade radius is on the order of a few micrometers, depending on the Rydberg atom states. An excitation blockade effect can be used to realize single photon source in thermal cesium vapor microcells. The micron cesium-cell is used to spatially localize atomic groups, which results in the atomic decoherence time on the order of microseconds or even nanoseconds. This requires a high-power pulsed laser to prepare the Rydberg atomic state at a nanosecond scale.</sec><sec>Four-photon excitation schemes with narrow linewidth lasers are also used experimentally. The cesium-Rydberg state can usually be excited by the lasers with optical wavelengths 852 and 509 nm, respectively. The laser system is well-stabilized so that the detuning is small compared with the spontaneous linewidth of Rydberg state, while the laser power and temporal mode need to be specified for ns-time coherence in thermal cesium vapor microcells. The 852 nm laser can be achieved by modulating the continuous laser beam with the help of an electro-optic intensity modulator (EOIM). While this remains a technical challenge for 509 nm laser with ns-laser pulse. There is no EOIM to generate the ns-laser pulse with high power.</sec><sec>We demonstrate a novel generation method of 509 nm laser system. In our experiments, a 1018 nm fiber laser is used to produce a continuous laser with a typical linewidth of ~8 kHz and power of 10 mW. The nanosecond pulse is generated with the help of an electro-optic intensity modulator (EOIM) by modifying the continuous laser beam. The peak power of modulated optical pulse is amplified to 4600 W by using a homemade fiber amplifier. The output beam of 1018 nm is then injected into a periodically poled lithium-niobate (PPLN) to generate the second harmonics laser of 509 nm. The typical peak power of 509 nm reaches 173 W by optimizing PPLN phase matching parameters. The pulse repetition frequency of the 509 nm laser can be continuously tuned in a range of 300 kHz–100 MHz, and the pulse width can be continuously tuned in a range of 1–100 ns. Peak power fluctuation of the pulses is about 1.3%. The power 509 nm laser with optimized pulse parameters can be used to excite the cesium atom with GHz bandwidth. Meanwhile the two seed source lasers is well established experimentally, which allows alternating pulses with a different wavelength. This is an essential capability for realizing a single photon source through four-wave mixing.</sec>
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy