Fast phase unwrapping using digital differentiation-integration method

Author:

Wang Zi-Shuo,Liu Lei,Liu Chen-Bo,Liu Ke,Zhong Zhi,Shan Ming-Guang, ,

Abstract

Digital holography is one of the most widely used quantitative phase imaging technologies at present, owing to its non-contact, high-accuracy and full-filed measurement. However, when the optical path difference induced by the measurement sample is larger than the used wavelength, a phase unwrapping algorithm has to be utilized to unwrap the phase and retrieve the actual phase. And the existing phase unwrapping algorithms suffer huge computational burden and slow retrieval speed. Although they have been greatly improved, their retrieval speed is limited by the phase unwrapping. In order to solve the above-mentioned problems, a digital differentiation-integration based phase unwrapping is proposed in this paper. This algorithm is based on the fact that the actual phase information is contained in the complex-valued function after Fourier transform, band-pass filter and inverse Fourier transform. After Fourier transform, band-pass filter and inverse Fourier transform, a complex-valued function containing the actual phase is retrieved, and two sub complex-valued functions can be extracted with just one-pixel shift digitally. Then, two functions are divided pixel by pixel, and another complex-valued function containing the differentiation of the actual phase is obtained. So the differential phase can be retrieved easily by the phase extraction. Finally, the retrieved differential phase is integrated along the inverse direction of shifting, and the unwrapped phase can be obtained directly. This algorithm can work effectively when the variation of the measurement phase is in a range of (–π, π]. This algorithm is just based on the Fourier transform and the complex-valued division. Unlike the existing unwrapping algorithms, this algorithm is much easier to conduct and has light computation burden. Therefore, this algorithm can realize fast and accurate phase reconstruction directly. Several simulation and experimental results can verify the effectiveness of this algorithm.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3