Author:
Guan Xin,Chen Gang, , , ,
Abstract
Topological gapless systems, as the connection of the different topological quantum phases, have received much attention. Topological nonmediocre nodes are typically observed in two- or three-dimensional gapless systems. In this paper, we demonstrate that the topological nonmediocre nodes are existent in a model that lies between one dimension and two dimensions. Superconducting circuits, as essential all-solid state quantum devices, have offered a promising platform for studying the macro-controlling quantum effects. Recently, experimental achievements have enabled the realization of tunable coupling strengths between transmon qubits and the implementation of a one-dimensional Su-Schrieffer-Heeger (SSH) model [Li X <i>et al.</i> <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://doi.org/10.1103/PhysRevApplied.10.054009">2018 <i>Phys. Rev. Appl.</i> <b>10</b> 054009</ext-link>]. According to this work, herein we present a two-leg SSH model implemented in superconducting circuits and demonstrate the existence of topological nonmediocre nodes. Firstly, two-leg superconducting circuit with transmon qubits which are coupled with their nearest-neighbor sites by capacitors is designed. To construct the two-leg SSH model, we introduce two alternating-current magnetic fluxes to drive each transmon qubit. We discover two types of phase boundaries in the SSH model and obtain the corresponding energy spectra and phase diagram. We identify two distinct topological insulating phases characterized by winding number ±1, and the corresponding edge states exhibit distinct characteristics. Moreover, we discuss the topological properties of the two phase boundaries. By representing the Bloch states as a vector field in <i>k</i> space, we demonstrate the existence of two kinks of nonmediocre nodes with first-type phase boundaries. These two nonmediocrenodes possess distinct topological charges of 1 and –1, respectively. On the other hand, the nonmediocre nodes with the second-type phase boundaries are topologically trivial. These results open the way for exploring novel topological states, ladder physical systems, and nodal point topological semimetals.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy