Magnetic and electrical-thermal transport properties of Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> single crystal

Author:

Zhu Xin-Qiang,Wang Jian,Zhu Can,Luo Feng,Chen Shu-Quan,Xu Jia-Hui,Xu Feng,Wang Jia-Fu,Zhang Yan,Sun Zhi-Gang, , ,

Abstract

Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> is a magnetic Weyl semimetal with special magnetic and electronic structure. Its unique band structure makes it have many interesting physical properties such as abnormal Hall effect, negative magnetoresistance effect, and abnormal Nernst effect. In this work, high quality Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> single crystal with a dimension of 8 mm×7 mm×0.5 mm is synthesized by self-flux method. We measure its electrical transport properties (magnetoresistance effect, Hall effect, etc.) and thermal transport properties (Seebeck effect) at low temperature. The free surface of the single crystal exhibits obvious layered growth characteristics, indicating that the Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> crystal grows along the <i>c</i>-axis direction. The value of the normalized resistivity <i>ρ</i><sub>3 K</sub>/<i>ρ</i><sub>300 K</sub> for the single crystal sample at 3 K is only 0.08, indicating that the crystal quality of the sample is at a relatively high level. The thermomagnetic (<i>M</i>-<i>T</i>) curves show that a special magnetic structure near 140 K (<i>T</i><sub>A</sub>) below the Curie temperature point (<i>T</i><sub>C</sub> = 178 K). This special magnetic structure is a magnetic transition state in which ferromagnetic state and antiferromagnetic state coexist, making them appear as a local minimum point in the <i>M</i>-<i>T</i> curve. The Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> shows a negative anomalous “convex” magnetoresistance in a large range of 100—160 K, and there exists a maximum critical magnetic field <i>B</i><sub>0</sub> (1.41 T), near <i>T</i><sub>A</sub>. The coercivity <i>H</i><sub>C</sub> drops to almost zero at <i>T</i><sub>A</sub> and the Hall resistivity <i>ρ</i><sub><i>yx</i></sub> also reaches a maximum value of about 20 μΩ·cm. This may be due to the competition between ferromagnetic state and antiferromagnetic state to form non-trivial spin texture, resulting in the unique electrical transport behavior near <i>T</i><sub>A</sub>. When the temperature rises to <i>T</i><sub>C</sub>, the Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> undergoes a ferromagnetic phase transition, with a saturation magnetization of <i>M</i><sub>S,</sub> anomalous Hall conductivity <inline-formula><tex-math id="M1">\begin{document}$ {\sigma }_{yx}^{\rm A} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M1.png"/></alternatives></inline-formula>, and Hall resistivity <i>ρ</i><i><sub>yx</sub></i> sharply decreasing. Large anomalous Hall conductance <inline-formula><tex-math id="M2">\begin{document}$ {\sigma }_{yx}^{A} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M2.png"/></alternatives></inline-formula> and anomalous Hall angle <inline-formula><tex-math id="M3">\begin{document}$ {\sigma }_{yx}^{\rm A}/\sigma $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="17-20230621_M3.png"/></alternatives></inline-formula> are also present in Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>, with these values reaching 1.4×10<sup>3</sup> Ω<sup>−1</sup>·cm<sup>−1</sup> and 18%, respectively. The magnetoresistance measurements reveal that the variation of the magnetoresistance with the magnetic field is due to the combination of linear and parabolic contributions. The change in magnetoresistance with the angle <i>θ</i> between the magnetic field <i>B</i> and the current <i>I</i> has a reversal symmetry with C<sub>2<i>x</i></sub> symmetry, and the change in <i>θ</i> does not affect the contribution of its magnetoresistance source. In addition, positive magnetoresistance and negative magnetoresistance are found to be shifted at about 60 K. the shift in positive magnetoresistance and negative magnetoresistance are mainly attributed to the competing positive contribution of the Lorentz force to the magnetoresistance and the negative contribution of the spin disorder. The scattering mechanism of Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> at low temperature is a combination of acoustic wave scattering and electron– phonon scattering. At 60–140 K, the enhancement of spin disorder causes enhanced electron–phonon scattering, resulting in a plateau characteristic of the Seebeck coefficient <i>S</i>. The research shows that the special magnetic structure and electron spin of Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> at low temperatures have an important influence on its electrothermal transport behavior.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3