Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED

Author:

Bao Xi,Guan Yun-Xia,Li Wan-Jiao,Song Jia-Yi,Chen Li-Jia,Xu Shuang,Peng Ke-Ao,Niu Lian-Bin,

Abstract

Triplet exciton-charge interaction (TQI) has two forms: dissociation and scattering, However, it is still unclear how the hole injection layer affects the dissociation and scattering of triplet excition and the transition between positive and negative values of magneto-conductance (MC). In this paper, HAT-CN, which can produce carrier ladder effect, is used as hole injection layer (HIL), and magnetic effect is used as a tool to study it. The results show that there are three characteristic magnetic fields in the device: hyperfine, dissociation and scattering, which are verified by fitting the MC with Lorentzian and non-Lorentzian functions. The hyperfine characteristic magnetic field results from the magnetic field suppressing superfine field-induced charge-spin mixing. With the enhancement of magnetic field, hole injection layer/hole transport layer interface produces carrier ladder effect, which improves the hole injection efficiency. The triplet excitions are separated by the hole, then the secondary carriers are produced, which makes the device’s luminous brightness and efficiency reach to 43210 cd/m<sup>2</sup> and 9.8 cd/A, respectively. The carrier ladder effect will also lead to a large accumulation of injected charges, resulting in the scattering of charge carriers by triplet excition, thereby reducing their mobility, which is not conducive to the formation of excited states nor device luminescence. The MC is modulated by <i>K</i><sub>S</sub>/<i>K</i><sub>T</sub> (recombination rate ratio), and when the electric field is small <inline-formula><tex-math id="M5">\begin{document}$ {K}_{{\rm{S}}}\gg {K}_{{\rm{T}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230851_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230851_M5.png"/></alternatives></inline-formula>, the recombination ratio is relatively large, resulting in positive MC. With the increase of electric field <inline-formula><tex-math id="M6">\begin{document}$ {K}_{{\rm{S}}}\approx {K}_{{\rm{T}}}=K$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230851_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="21-20230851_M6.png"/></alternatives></inline-formula>, <i>K</i><sub>S</sub>/<i>K</i><sub>T</sub> approaches 1 at this time, resulting in an MC, which is negative in a low temperature environment. This work provides a novel approach for regulating and effectively utilizing triplet excitons.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3