Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy

Author:

You Ming-Hui,Li Xue,Li Shi-Jun,Liu Guo-Jun, , ,

Abstract

The InAs/GaSb superlattices (SPLs) is an important component of quantum cascade laser (QCL) and interband cascade laser (ICL). In particular, the upper and lower SPL waveguide layers of the ICL are alternately grown from a large number of ultra-film epitaxial layers (nm) by molecular beam epitaxy(MBE). Subtle lattice mismatch may directly lead to the deterioration of material crystal quality, and the change of thicknessand the composition of each layer will strongly affect the structural performance of device material. The optimal growth temperature of InAs/GaSb SPLs is about 420 ℃. By growing GaSb/AlSb and InAs/GaSb SPL both with 40 short periods under the substrate rotating, the thickness of GaSb layer and AlSb layer are 5.448 nm and 3.921 nm, and the thickness of InAs layer and GaSb layer are 8.998 nm and 13.77 nm, respectively. The error is within about 10%, and the optimal growth conditions of InAs/AlSb SPLs are obtained. A lattice matched 40-period InAs/AlSb superlattice waveguide layer is grown on GaSb substrate. The influence of drifting As injection on the average lattice constant of InAs/AlSb superlattice is fully considered. Under the condition of fixed SOAK time of 3 s, the As pressure is changed to 1.7 × 10<sup>–6</sup> mbar to adjust the average lattice constants of the superlattices and achieve their matching with the GaSb substrate lattice. The experimental results show that the 0 order satellite peak of the SPL coincides with the peak of the GaSb substrate, and has a perfect lattice matching, and that the sharp second order satellite peak and the periodic structure good repeatability also indicate that the superlattice material has the excellent structural quality of the SPLs structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3