Design of a single glass tube optical lens for soft X-ray laser decoherence

Author:

Yuan Tian-Yu,Shao Shang-Kun,Sun Xue-Peng,Li Hui-Quan,Hua Lu,Sun Tian-Xi, ,

Abstract

Laser has the advantages of high brightness, good monochromaticity, high coherence and good directionality, however, in some cases such as laser imaging and laser processing where only its high brightness or high monochromaticity is desired, the interference effect caused by high coherence can affect and limit its effective applications. In this work, a new single glass tube decoherence lens (SGTDL) is designed for soft X-ray laser decoherence through the simulation calculations. The simulation results show that an SGTDL with an entrance diameter of 5 mm, exit diameter of 0.6 mm and a length of 15 cm can effectively reduce the coherence of the X-ray laser with a wavelength of 10 nm and a beam waist radius of 1.25 mm. At the same time, the exit beam with a divergence range of 30–50 mrad is obtained at the SGTDL’s exit, and the transmission efficiency and gain in power density of the SGTDL are 78% and 52.74, respectively. For a laser beam with a wavelength of up to 1 nm, this model of SGTDL can maintain the transmission efficiency of the beam at more than 30%. This work also discusses the influence of the X-ray laser energy and the SGTDL’s length on the transmission performances of the SGTDL. The results show that the SGTDL designed according to the total reflection principle can meet the application requirements for laser decoherence in a range from the extreme ultraviolet to X-ray wavelength, and has a wide application prospect in X-ray laser imaging, laser processing, etc.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Yu Y, Li Q M, Yang J Y, et al. 2019 Chin. J. Lasers 46 0100005
余永, 李钦明, 杨家岳等 2019 中国激光 46 0100005

2. Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12

3. He L, Özdemir Ş K, Yang L 2013 Laser Photonics Rev. 7 60

4. Jia H Y, Huang S L, Jiao Y, Li J Y, Liu K X, Liu S, Liu W H, Liu Z Q, Long T Y, Qin W L, Zhao S 2022 High Power Laser and Particle Beams 34 054001
贾豪彦, 黄森林, 焦毅, 李京祎, 刘克新, 刘帅, 刘伟航, 刘中琦, 龙天云, 秦伟伦, 赵晟 2022 强激光与粒子束 34 054001

5. Kopp C, Ravel L, Meyrueis P 1999 J. Opt. A: Pure Appl. Opt. 1 398

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3