Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation

Author:

Jiao Chen,Jian Yue,Zhang Ai-Xia,Xue Ju-Kui, ,

Abstract

<sec>In a recent experiment, the excitation spectrum of spin-orbit (SO) coupled Bose-Einstein condensates (BECs) of <inline-formula><tex-math id="M1">\begin{document}$^{87}{\rm{Rb}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222306_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222306_M1.png"/></alternatives></inline-formula> atoms was studied by using Bragg spectroscopy, and the roton-maxon structure was found to exist in the excitation spectrum of magnetized phase. In addition, the roton-mode and its softening phenomenon are obtained by using various artificial SO couplings such as Rashba SO coupling and spin-orbital-angular-momentum coupling. However, the SO coupling strength in previous studies could not be controlled in real time, which limits the further study and precise regulation of the excitation spectrum of condensate. Thus, it is still an important topic to study how to regulate the SO coupling strength of the system through an external driving field, and further regulate the excitation spectrum of SO coupled BECs.</sec> <sec>In this work, the excitation spectrum of a tunable SO coupled BECs in free space is studied by using Bogoliubov theory. The time-independent effective Floquet Hamiltonian with two-body interaction is obtained in the high frequency approximation, and then a tunable SO coupling and an effective two-body interaction that can be regulated by the periodic driving of Raman coupling are obtained. Based on the effective Floquet Hamiltonian of the system, the dispersion relation of the BECs with interactions is numerically calculated. It is found that the periodic driving can effectively regulate the structure of the dispersion relation, which indicates that the periodic driving can regulate the phase transition between the zero-momentum phase and the plane wave phase. Then, the Bogoliubov-de-Gennes (BdG) equation of the system is obtained by using Bogoliubov theory. Moreover, the excitation spectrum of the BECs in the zero momentum phase and the plane wave phase are studied, respectively. Only the phonon excitation exists in the excitation spectrum of the zero momentum phase, and the excitation spectrum behaves as a Bessel function with the increase of the periodic driving strength. The phonon and roton excitations exist in the excitation spectrum of the plane wave phase, and the roton mode gradually softens with the increase of periodically driving strength. Therefore, the phonon and roton excitations in the excitation spectrum of SO coupled BECs can be regulated in real time by periodically driving Raman coupling.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3