Tunable electronic structures and interface contact in graphene/C<sub>3</sub>N van der Waals heterostructures

Author:

Huang Min,Li Zhan-Hai,Cheng Fang,

Abstract

Graphene-based van der Waals heterojunctions can not only modulate the electronic properties of graphene but also retain the superior properties of the original monolayer. In this paper, the structure, electrical contact types, electronic and optical properties of graphene/C<sub>3</sub>N van der Waals heterojunctions are systematically investigated based on first-principles calculations. We find that there is a p-type Schottky contact of only 0.039 eV in the graphene/C<sub>3</sub>N van der Waals heterojunctions in an equilibrium state. The external electric field can adjust the interface contact type, specifically, from p-type to n-type Schottky contact, or from p-type Schottky contact to Ohmic contact. The vertical strain not only opens a nonnegligible band gap of 360 meV on the Dirac cone of graphene in graphene/C<sub>3</sub>N van der Waals heterojunctions, but also modulates the band gap of C<sub>3</sub>N in the heterojunctions. Moreover, both the doping type and concentration of the carriers can be effectively tuned by the applied electric field and the vertical strain. The increase in carrier concentration is more pronounced by the applied electric field. Comparing with the pristine monolayer graphene and monolayer C<sub>3</sub>N, the optical response range and the light absorption rate of graphene /C<sub>3</sub>N van der Waals heterojunctions are enhanced. Main absorption peak in the spectrum reaches to 10<sup>6</sup> cm<sup>–1</sup>. These results not only provide valuable theoretical guidance for designing Schottky-based graphene/C<sub>3</sub>N van der Waals heterojunctions devices, but also further explore the potential applications of heterojunctions in optoelectronic nanodevices and field-effect transistor devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3