Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric
-
Published:2024
Issue:2
Volume:73
Page:027301
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Song Xiao-Fan,Min Dao-Min,Gao Zi-Wei,Wang Po-Xin,Hao Yu-Tao,Gao Jing-Hui,Zhong Li-Sheng,
Abstract
With the development of science and technology, polymer dielectric capacitors are widely used in energy, electronics, transportation, aerospace, and many other areas. For polymer dielectric energy storage capacitors to remain effective in practical applications, excellent charge and discharge performance is essential. However, the performance of the common polymer dielectric capacitors will deteriorate rapidly at high temperature, which makes them fail to work efficiently under worse working conditions. Dielectric trap energy levels and trap densities increase when nanoparticles are incorporated into the dielectric. The change in trap parameters will affect carrier transport. Therefore, the high temperature energy storage performance of polymer nanocomposite dielectric can be improved by changing the trap parameters to regulate the carrier transport process. However, the quantitative relationship between trap energy level and trap density and the energy storage properties of nanocomposite dielectric need further studying. In this paper, the energy storage and release model for exponentially distributed trapped charge jump transport in linear polymer nanocomposite dielectrics is constructed and simulated. The volume resistivity and electric displacement-electric field loops of pure polyetherimide are simulated at 150 ℃, and the simulation results match the experimental results, which demonstrates the validity of the model. Following that, under different temperatures and electric fields, the current density, electric displacement-electric field loops, discharge energy density and charge-discharge efficiency of polyetherimide nanocomposite dielectric are simulated by using different trap parameters. The results show that increasing the maximum trap energy level and the total trap density can effectively reduce the carrier mobility, current density and conductivity loss, and enhance the discharge energy density and the charge-discharge efficiency of the nanocomposite dielectric. On condition that temperature is 150 ℃ and applied electric field is 550 kV/mm, the polyetherimide nanocomposite dielectric with a maximum trap energy level of 1.0 eV and a total trap density of 1×10<sup>27</sup> m<sup>–3</sup>, has 4.26 Jcm<sup>–3</sup> of discharge energy density and 98.93% of energy efficiency. These parameters in the polyetherimide nanocomposite dielectric are 91.09% and 227.58% higher than those in the pure polyetherimide, respectively. The energy storage performance under high temperature and high electric field is obviously improved. It provides theoretical and model support for the research and development of capacitors with high temperature resistance and energy storage performance.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference32 articles.
1. Miao W J, Chen H X, Pan Z B, Pei X L, Li L, Li P, Liu J J, Zhai J W, Pan H 2021 Compos. Sci. Technol. 201 108501 2. Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Stor. Mater. 28 255 3. Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420 127614 4. Li H, Ai D , Ren L L , Yao B, Han Z B, Shen Z H, Wang J J , Chen L Q , Wang Q 2019 Adv. Mater. 31 1900875 5. LI Q, LI M Q 2021 High Volt. Eng. 47 3105 李琦, 李曼茜 2021 高电压技术 47 3105
|
|