Construction method of hybrid quantum long-short term memory neural network for image classification

Author:

Yang Guang,Chao Su-Ya,Nie Min,Liu Yuan-Hua,Zhang Mei-Ling,

Abstract

Long-short term memory (LSTM) neural network solves the problems of long-term dependence, gradient disappearance and gradient explosion by introducing memory units, and is widely used in time series analysis and prediction. Combining quantum computing with LSTM neural network will help to improve its computational efficiency and reduce the number of model parameters, thus significantly improving the performance of traditional LSTM neural network. This paper proposes a hybrid quantum LSTM (hybrid quantum long-short term memory, HQLSTM) network model that can be used to realize the image classification. It uses variable quantum circuits to replace the nerve cells in the classical LSTM network to realize the memory function of the quantum network. At the same time, it introduces Choquet integral operator to enhance the degree of aggregation between data. The memory cells in the HQLSTM network are composed of multiple variation quantum circuits (VQC) that can realize different functions. Each VQC consists of three parts: the coding layer, which uses angle coding to reduce the complexity of network model design; the variation layer, which is designed with quantum natural gradient optimization algorithm, so that the gradient descent direction does not target specific parameters, thereby optimizing the parameter update process and improving the generalization and convergence speed of the network model; the measurement layer, which uses the Pauli Z gate to measure, and the expected value of the measurement result is input to the next layer to extract useful information from the quantum circuit. The experimental results on the MNIST, FASHION-MNIST and CIFAR datasets show that the HQLSTM model achieves higher image classification accuracy and lower loss value than the classical LSTM model and quantum LSTM model. At the same time, the network space complexity of HQLSTM and quantum LSTM are significantly reduced compared with the classical LSTM network.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on deep learning based reenactment methods for deepfake applications;IET Image Processing;2024-08-19

2. Financial market trend prediction model based on LSTM neural network algorithm;Journal of Computational Methods in Sciences and Engineering;2024-05-10

3. Research on the prediction of short time series based on EMD-LSTM;Journal of Computational Methods in Sciences and Engineering;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3