Prediction of ferromagnetic materials with high Curie temperature based on material composition information

Author:

Sun Jing-Qi,Wu Xu-Cai,Que Zhi-Xiong,Zhang Wei-Bing,

Abstract

The search for ferromagnetic materials with high Curie temperature (<i>T</i><sub>c</sub>) is a hot issue in condensed matter physics. In this work, an effective machine learning model of Curie temperature based on material component information is established to predict a variety of ferromagnetic materials with high Curie temperature. Based on the collected data of 1568 ferromagnetic materials, and taking the component information of ferromagnetic materials as descriptors, in this work four efficient machine learning models are constructed, namely support vector regression, kernel ridge regression, random forest and extremely randomized trees, through hyperparameter optimization and ten-break cross-validation. Of them, extremely randomized tree model has the best prediction performance, and its cross-validation <i>R</i><sup>2</sup> score can reach 81.48%. At the same time, the extremely randomized tree model is also used to predict 36949 materials in the materials project database, and 338 ferromagnetic materials with <i>T</i><sub>c</sub> greater than 600 K are found in this work. The method proposed in this paper can help obtain ferromagnetic materials with high Curie temperature and accelerate the process of ferromagnetic material design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3